We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Stem Cell and 3D Printing Generate Viable Tissue

By LabMedica International staff writers
Posted on 11 May 2017
Print article
Image: Three-dimensional (3D)-printed cartilage constructs growing in tissue culture (Photo courtesy of the University of Gothenburg).
Image: Three-dimensional (3D)-printed cartilage constructs growing in tissue culture (Photo courtesy of the University of Gothenburg).
A team of Swedish cell biologists combined three-dimensional (3D) bio-printing with advanced stem cell technology to create viable cultures of cartilage tissue that had cellular and mechanical properties similar to patients’ natural cartilage.

Cartilage lesions can progress into secondary osteoarthritis and cause severe clinical problems in numerous patients. To fill and cure such lesions, investigators at the University of Gothenburg developed a novel class of stem cells that could survive being injected by a three-dimensional printing method and then mature into functional cartilage tissue.

The investigators began with cartilage cells taken from patients undergoing knee surgery. These cells were then manipulated in a laboratory and transformed into induced pluripotent stem cells. The stem cells were expanded and encapsulated in a solution of nanofibrillated cellulose and printed into a structure using a three-dimensional (3D) bio-printer. Following printing, the stem cells were treated with growth factors that caused them to differentiate into cartilage tissue.

Much of the research effort involved finding a procedure to enable the cells to survive printing and multiply and a protocol that induced the cells to differentiate to form cartilage.

Results published in the April 6, 2017, online edition of the journal Scientific Reports revealed that pluripotency was initially maintained, and after five weeks, hyaline-like cartilaginous tissue with collagen type II expression and lacking tumorigenic Oct4 expression was observed in the three-dimensional (3D)-bio-printed constructs. Moreover, a marked increase in cell number within the cartilaginous tissue was detected by 2-photon fluorescence microscopy, indicating the importance of high cell densities in the pursuit of achieving good survival after printing.

“In nature, the differentiation of stem cells into cartilage is a simple process, but it is much more complicated to accomplish in a test tube. We are the first to succeed with it, and we did so without any animal testing whatsoever," said senior author Dr. Stina Simonsson, associate professor of cell biology at the University of Gothenburg. "We investigated various methods and combined different growth factors. Each individual stem cell is encased in nanocellulose, which allows it to survive the process of being printed into a three-dimensional (3D) structure. We also harvested media from other cells that contain the signals that stem cells use to communicate with each other - so called conditioned medium. In layman’s terms, our theory is that we managed to trick the cells into thinking that they are not alone.”

Gold Member
Hematology Analyzer
Swelab Lumi
Automated Blood Typing System
IH-500 NEXT
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.