We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




MicroRNA Regulates Immune Response in Intestinal Inflammation

By LabMedica International staff writers
Posted on 31 May 2017
Print article
Image: A micrograph showing inflammation of the large bowel in a case of inflammatory bowel disease (Photo courtesy of Wikimedia Commons).
Image: A micrograph showing inflammation of the large bowel in a case of inflammatory bowel disease (Photo courtesy of Wikimedia Commons).
Results presented in a recently published paper revealed a previously unappreciated role for a specific microRNA in regulating the innate immune response during intestinal inflammation.

MicroRNAs (miRNAs) are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

Investigators at the University of Colorado reported in the May 9, 2017, online edition of The Journal of Experimental Medicine that the microRNA miR-223 was increased in intestinal biopsies from patients with active inflammatory bowel disease (IBD) and in preclinical models of intestinal inflammation. The miR-223 miRNA is produced by neutrophils and monocytes and has previously been shown to repress the messenger RNA encoding the protein NLRP3, a key component of the inflammasome. Inflammasomes are molecular platforms activated by cellular infection or stress that trigger the maturation of proinflammatory cytokines such as interleukin-1beta (IL-1beta) to engage innate immune defenses.

To determine the ramifications of increased miR-223 in IBD, the investigators created model systems by genetically engineering lines of mice to lack the miRNA. They found that mice lacking miR-223 expressed higher levels of NLRP3, causing increased IL-1beta production and enhanced susceptibility to intestinal inflammation.

In contrast, the nanoparticle-mediated overexpression of miR-223 reduced the severity of experimental colitis, NLRP3 levels, and IL-1beta release.

"Our study highlights the miR-223-NLRP3-IL-1beta regulatory circuit as a critical component of intestinal inflammation," said senior author Dr. Eóin McNamee, assistant professor of gastroenterology, immunology, and physiology at the University of Colorado. "miR-223 serves to constrain the level of NLRP3 inflammasome activation and provides an early brake that limits excessive inflammation. Genetic or pharmacologic stabilization of miR-223 may hold promise as a future novel therapy for active flares in IBD."

Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
Centrifuge
Centrifuge 5430/ 5430 R
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.