We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cytokine Drives Scar Formation in the Liver

By LabMedica International staff writers
Posted on 12 Jun 2017
Print article
Image: A micrograph showing cirrhosis, a form of liver fibrosis (Photo courtesy of Wikimedia Commons).
Image: A micrograph showing cirrhosis, a form of liver fibrosis (Photo courtesy of Wikimedia Commons).
Researchers have identified a cytokine that contributes strongly to the processes involved in the formation of scars in the liver, such as those that form as a consequence of hepatitis C infection.

Genetic variation in the IFNL3–IFNL4 (interferon-gamma3–interferon-gamma4) region has been shown to be associated with liver inflammation and fibrosis. Whether the IFN-gamma3 or IFN-gamma4 protein was the principle driver of this association was not known.

Investigators at the Westmead Institute for Medical Research (Sydney, Australia) had found previously that the common genetic variations associated with liver fibrosis were located on chromosome 19 between the IFNL3 and IFNL4 genes. In the current study, they analyzed liver samples from 2000 patients with hepatitis C, using state-of-the art genetic and functional analysis, to determine the specific IFNL protein responsible for liver fibrosis.

They reported in the April 10, 2017, online edition of the journal Nature Genetics that inflammation of the liver, fibrosis stage, fibrosis progression rate, hepatic infiltration of immune cells, IFN-gamma3 expression, and serum sCD163 levels (a marker of activated macrophages) were greater in individuals with the IFNL3–IFNL4 risk haplotype that produced IFN-gamma3 but did not produce IFN-gamma4. Therefore, IFN-gamma3 rather than IFN-gamma4 likely mediated IFNL3–IFNL4 haplotype–dependent liver inflammation and fibrosis.

"Liver disease is now the fifth most common cause of death in Australia, affecting six million Australians, and with significant financial cost to the health system," said senior author Dr. Jacob George, professor of hepatic medicine at the Westmead Institute for Medical Research. "We have designed a diagnostic tool based on our discoveries, which is freely available for all doctors to use, to aid in predicting liver fibrosis risk. This test will help to determine whether an individual is at high risk of developing liver fibrosis, or whether a patient's liver disease will progress rapidly or slowly, based on their genetic makeup. This important discovery will play a vital role in reducing the burden of liver disease into the future."

Related Links:
Westmead Institute for Medical Research

Gold Member
Hematology Analyzer
Swelab Lumi
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA
New
Chemistry Analyzer
MS100

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.