We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel In Vitro Method May Revolutionize Antibody Production

By LabMedica International staff writers
Posted on 10 Aug 2017
Print article
Image: An electron microscopy image showing an antibody-secreting plasma cell generated using antigen- and CpG-coated nanoparticles (Photo courtesy of Sanjuan Nandin et al., 2017).
Image: An electron microscopy image showing an antibody-secreting plasma cell generated using antigen- and CpG-coated nanoparticles (Photo courtesy of Sanjuan Nandin et al., 2017).
A novel method for boosting the ability of a vaccine to stimulate production of antibodies is based on the in vitro stimulation of B-cells with nanoparticles conjugated to both GpG and antigen.

Antigen-specific B-cell activation is a key step in the initiation of immune responses. The in vitro activation of B-cells in an antigen-dependent manner is difficult to achieve, because wide haplotype variations necessitates the use of unique T-cells specific to a particular antigen to activate the B-cells. To overcome this limitation, investigators at the Francis Crick Institute (London, United Kingdom) and colleagues in the United States developed a novel, in vitro strategy to stimulate human B-cells with streptavidin nanoparticles conjugated to both GpG and antigen.

CpG oligodeoxynucleotides (or CpG ODN) are short single-stranded synthetic DNA molecules that contain a cytosine triphosphate deoxynucleotide (C) followed by a guanine triphosphate deoxynucleotide (G). The (p) refers to the phosphodiester link between consecutive nucleotides. When these CpG motifs are unmethylated, they act as immunostimulants. The CpG signature is recognized by the pattern recognition receptor (PRR) Toll-Like Receptor 9 (TLR9), which is constitutively expressed only in B-cells and plasmacytoid dendritic cells (pDCs) in humans and other higher primates.

The investigators reported in the July 24, 2017, online edition of The Journal of Experimental Medicine that the stimulatory effect achieved by this technique induced antigen-specific B-cell proliferation, differentiation of B-cells into plasma cells, and robust antibody secretion after a few days of culture. The investigators validated this strategy using cells from healthy donors to retrieve human antibodies against tetanus toxoid and influenza hemagglutinin (HA) from H1N1 and newly emergent subtypes such as H5N1 and H7N9.

Anti-HA antibodies were cross-reactive against multiple subtypes, and some showed neutralizing activity. Although these antibodies may have arisen as a result of previous influenza infection, the investigators also obtained gp120-reactive antibodies from non–HIV-infected donors, indicating that they could generate antibodies without prior antigenic exposure.

"Specifically, it should allow the production of these antibodies within a shorter time frame in vitro and without the need for vaccination or blood/serum donation from recently infected or vaccinated individuals," said senior author Dr. Facundo Batista, formerly at the Francis Crick Institute and now at the Ragon Institute (Boston, MA, USA). "In addition, our method offers the potential to accelerate the development of new vaccines by allowing the efficient evaluation of candidate target antigens."

Related Links:
Francis Crick Institute
Ragon Institute
Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
Liquid Based Cytology Production Machine
LBP-4032
New
Hepatitis B Virus Test
HBs Ab – ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.