Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nanoparticle Reagent Simplifies Gene Expression Programming

By LabMedica International staff writers
Posted on 13 Sep 2017
Novel nanoparticle carriers were used to deliver mRNA directly to specific cell types (T-cells of the immune system and blood stem cells) in order to induce short-term changes in gene expression that could be harnessed to treat diseases ranging from cancer to diabetes.

Therapies based on immune cells have been applied for a variety of diseases. More...
However, the viral and electroporation methods used to create such cytoreagents are complex and expensive. Therefore, investigators at the Fred Hutchinson Cancer Research Center (Seattle, WA, USA) developed targeted mRNA nanocarriers that were simply mixed with cells to reprogram them via transient gene expression. The nanoparticles were loaded with a gene-editing tool that snipped out natural T-cell receptors, and then was paired with genes encoding a "chimeric antigen receptor" or CAR, a synthetic molecule designed to attack cancer cells. Ultimately, the nanoparticles were removed from the body like other cell waste.

This approach was called "hit-and-run" genetic programming, since the transient effect of mRNA did not change the DNA, but it was enough to make a permanent impact on the cells' therapeutic potential.

In the August 30, 2017, online edition of the journal Nature Communications the investigators described three examples that they had used to establish that the approach was simple and generalizable. First, they demonstrated that nanocarriers delivering mRNA encoding a genome-editing agent could efficiently knockout selected genes in anti-cancer T-cells. Second, they imprinted a long-lived phenotype exhibiting improved antitumor activities into T-cells by transfecting them with mRNAs that encoded a key transcription factor of memory formation. Third, they showed how mRNA nanocarriers could program hematopoietic stem cells with improved self-renewal properties.

"Our goal is to streamline the manufacture of cell-based therapies," said senior author Dr. Matthias Stephan, a biomaterials expert at the Fred Hutchinson Cancer Research Center. "In this study, we created a product where you just add it to cultured cells and that is it -- no additional manufacturing steps. We developed a nanocarrier that binds and condenses synthetic mRNA and protects it from degradation. Just add water to our freeze-dried product. If you know from the scientific literature that a signaling pathway works in synergy, you could co-deliver mRNA in a single nanoparticle. Every cell that takes up the nanoparticle can express both."

Related Links:
Fred Hutchinson Cancer Research Center


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.