We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




3D Printing Used to Create Degradable Microfluidic Devices

By LabMedica International staff writers
Posted on 21 Sep 2017
Print article
Image: A modified three-dimensional printing technique was used to create temporary microstructures that could be degraded on demand using a biocompatible chemical trigger (Photo courtesy of the Wong Laboratory, Brown University).
Image: A modified three-dimensional printing technique was used to create temporary microstructures that could be degraded on demand using a biocompatible chemical trigger (Photo courtesy of the Wong Laboratory, Brown University).
A team of bioengineers modified the stereolithographic three-dimensional printing technique to create a series of microfluidic devices from biocompatible and degradable materials.

The stereolithographic technique is based on a computer-guided ultraviolet laser that traces patterns across the surface of a photoactive polymer solution. The light causes the polymers to coalesce, forming covalently bound, solid three-dimensional structures within the solution. The tracing process is repeated until an entire object is built from the bottom up.

Investigators at Brown University (Providence, RI, USA) modified this technique by printing on hydrogels using noncovalent (ionic) crosslinking, which enabled reversible patterning with controlled degradation. They demonstrated the feasibility of this approach using sodium alginate, photoacid generators, and various combinations of divalent cation salts, which could be used to tune the hydrogel degradation kinetics, pattern fidelity, and mechanical properties.

The investigators described in the September 5, 2017, online edition of the journal Lab on a Chip how they used this technique to prepare template perfusable microfluidic channels within a second encapsulating hydrogel for T-junction and gradient devices. Degradable alginate barriers were used to direct collective cell migration from different initial geometries, revealing differences in front speed and leader cell formation. The presence and degradation of printed alginate microstructures were further verified to have minimal toxicity on epithelial cells.

"The idea is that the attachments between polymers should come apart when the ions are removed, which we can do by adding a chelating agent that grabs all the ions," said senior author Dr. Ian Wong, assistant professor of engineering at Brown University. "This way we can pattern transient structures that dissolve away when we want them to. We can start to think about using this in artificial tissues where you might want channels running through it that mimic blood vessels. We could potentially template that vasculature using alginate and then dissolve it away like we did for the microfluidic channels."

Related Links:
Brown University

New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.