We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Transferred MicroRNAs Modulate Insulin Sensitivity in Models

By LabMedica International staff writers
Posted on 02 Oct 2017
Print article
Image: A scanning electron micrograph (SEM) showing the morphology of the bright and round shaped exosomes (Photo courtesy of the University of California, San Diego).
Image: A scanning electron micrograph (SEM) showing the morphology of the bright and round shaped exosomes (Photo courtesy of the University of California, San Diego).
Studies using mouse models revealed that certain microRNAs (miRNAs) capable of modulating glucose metabolism were transferred via exosomes from adipose tissue macrophages to insulin target cells where they induced insulin resistance or sensitivity.

MicroRNAs (miRNAs) are a family of noncoding 19- to 25-nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

Exosomes are cell-derived vesicles that are present in many and perhaps all biological fluids, including blood, urine, and cultured medium of cell cultures. The reported diameter of exosomes is between 30 and 100 nanometers, which is larger than low-density lipoproteins but much smaller than red blood cells. Exosomes, which contain RNA, proteins, lipids, and metabolites that are reflective of the cell type of origin, are either released from the cell when multivesicular bodies fuse with the plasma membrane, or they are released directly from the plasma membrane. Exosomes have specialized functions and play a key role in coagulation, intercellular signaling, and waste management.

Investigators at the University of California, San Diego (USA) worked with lines of genetically obese or lean mice. They reported in the September 21, 2017, online edition of the journal Cell that adipose tissue macrophages (ATMs) in obese mice secreted miRNA-containing exosomes (Exos), which caused glucose intolerance and insulin resistance when administered to lean mice. Conversely, ATM Exos obtained from lean mice improved glucose tolerance and insulin sensitivity when administered to obese recipients.

The investigators found that the microRNA miR-155 was one of the miRNAs overexpressed in obese ATM Exos, and earlier studies had shown that the well-known metabolic protein peroxisome proliferator-activated receptor gamma (PPAR gamma) was a miR-155 target. Furthermore, mice that had been genetically engineered to lack miR-155 were insulin sensitive and glucose tolerant compared to controls.

"The actions induced by exosomes as they move between tissues are likely to be an underlying cause of intercellular communication causing metabolic derangements of diabetes," said senior author Dr. Jerrold Olefsky, professor of medicine at the University of California, San Diego. "By fluorescently labeling cells, we could see exosomes and the microRNA they carry moving from adipose (fat) tissue through the blood and infiltrating muscle and liver tissues."

"This is a key mechanism of how diabetes works," said Dr. Olefsky. "This is important because it pins the pathophysiology of the disease in inflamed adipose tissue macrophages which are making these exosomes. If we can find out which of the microRNAs in those exosomes cause the phenotype of diabetes, we can find drug targets."

Related Links:
University of California, San Diego

New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Automated Blood Typing System
IH-500 NEXT
New
Tabletop Centrifuge
Mikro 185
New
Histamine ELISA
Histamine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.