Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




CRISPR Tool Enables Genome Repair by Precise RNA Editing

By LabMedica International staff writers
Posted on 06 Nov 2017
The CRISPR/Cas9 gene-editing tool has been modified to act as a promising RNA editing platform with broad applicability for research, therapeutics, and biotechnology.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

Investigators at the Broad Institute (Cambridge, MA, USA) and the Massachusetts Institute of Technology (Cambridge, USA) showed that a different CRISPR complex, CRISPR/Cas13a could be engineered for mammalian cell RNA knockdown and binding. To do this, the investigators engineered a Cas13 ortholog capable of robust knockdown and demonstrated RNA editing by using catalytically inactive Cas13 (dCas13) to direct adenosine to inosine deaminase activity via the enzyme ADAR2 to transcripts in mammalian cells.

Double-stranded RNA-specific adenosine deaminase is an enzyme that in humans is encoded by the ADAR (adenosine deaminase acting on RNA) gene. Adenosine deaminases acting on RNA (ADAR) are enzymes responsible for binding to double stranded RNA (dsRNA) and converting adenosine (A) to inosine (I) by deamination. As (I) is structurally similar to guanine (G), this induces (I) to (C) [cytosine] binding. The conversion from (A) to (I) disrupts the normal A:U pairing, which makes the RNA unstable. In both translation and replication (I) functions in a fashion similar to (G) in the RNA molecule.

Use of CRISPR\Cas13a enabled the investigators to develop a system, which they referred to as RNA Editing for Programmable A to I Replacement (REPAIR). This system, which had no strict sequence constraints, could be used to edit full-length transcripts containing pathogenic mutations. To demonstrate REPAIR's therapeutic potential, the investigators synthesized the pathogenic mutations that cause Fanconi anemia and X-linked nephrogenic diabetes insipidus, introduced them into human cells, and successfully corrected these mutations at the RNA level.

"The ability to correct disease-causing mutations is one of the primary goals of genome editing," said senior author Dr. Feng Zhang, professor of neuroscience at the Massachusetts Institute of Technology. "So far, we have gotten very good at inactivating genes, but actually recovering lost protein function is much more challenging. This new ability to edit RNA opens up more potential opportunities to recover that function and treat many diseases, in almost any kind of cell."

The CRISPR/Cas13-based REPAIR system was described in the October 25, 2017, online edition of the journal Science and the October 4, 2017, online edition of the journal Nature. The technology has been made freely available to researchers via the Zhang laboratory's page on the plasmid-sharing website Addgene.

Related Links:
Broad Institute
Massachusetts Institute of Technology
Addgene


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.