We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Peptide Targets Injured Brain Tissues

By LabMedica International staff writers
Posted on 24 Nov 2017
Print article
Image: A photomicrograph showing DAG (green-labeled peptide) targeting to the brain blood vessel (labeled red) in the hippocampus of the Alzheimer brain (Photo courtesy of the Ruoslahti Laboratory, Sanford-Burnham Prebys Medical Discovery Institute).
Image: A photomicrograph showing DAG (green-labeled peptide) targeting to the brain blood vessel (labeled red) in the hippocampus of the Alzheimer brain (Photo courtesy of the Ruoslahti Laboratory, Sanford-Burnham Prebys Medical Discovery Institute).
A novel peptide with potential therapeutic use for the treatment of neurological disorders such as Alzheimer's disease (AD) and Parkinson's disease was identified by in vivo phage display screening.

In vivo peptide phage display can be used for unbiased probing of tissues in situ for specific molecular signatures, particularly in the vasculature. Investigators at Sanford-Burnham Prebys Medical Discovery Institute (La Jolla, CA, USA) utilized this technique to discover homing peptides specific for different pathologies including tumors, atherosclerotic plaques, wounds, and severe brain injury.

Phage display is a laboratory technique for the study of protein–protein, protein–peptide, and protein-DNA interactions that uses bacteriophages to connect proteins with the genetic information that encodes them. In this technique, a gene encoding a protein of interest is inserted into a phage coat protein gene, causing the phage to "display" the protein on its outside while containing the gene for the protein on its inside, resulting in a connection between genotype and phenotype. These displaying phages can then be screened against other proteins, peptides, or DNA sequences, in order to detect interaction between the displayed protein and those other molecules. In this way, large libraries of proteins can be screened and amplified.

The investigators reported in the November 10, 2017, online edition of the journal Nature Communications that they had identified a cyclic nine amino acid peptide, DAG, which accumulated in the hippocampus of hAPP-J20 mice at different ages.

Intravenously injected DAG peptide homed to neurovascular unit endothelial cells and to reactive astrocytes in mouse models of AD. The investigators identified connective tissue growth factor (CTGF), a matricellular protein (a dynamically expressed non-structural protein that is present in the extracellular matrix) that is highly expressed in the brain of individuals with AD and in mouse models, as the target of the DAG peptide. They also showed that exogenously delivered DAG homed to the brain in mouse models of glioblastoma, traumatic brain injury, and Parkinson’s disease.

"Our findings show that endothelial cells, the cells that form the inner lining of blood vessels, bind our DAG peptide in the parts of the mouse brain affected by the disease," said senior author Dr. Erkki Ruoslahti, a distinguished professor at Sanford-Burnham Prebys Medical Discovery Institute. "This is very significant because the endothelial cells are readily accessible for probes injected into the blood stream, whereas other types of cells in the brain are behind a protective wall called the blood-brain barrier. The change in AD blood vessels gives us an opportunity to create a diagnostic method that can detect AD at the earliest stage possible. But first we need to develop an imaging platform for the technology, using MRI or PET scans to differentiate live AD mice from normal mice. Once that is done successfully, we can focus on humans."

"As our research progresses we also foresee CTGF as a potential therapeutic target that is unrelated to amyloid beta (Abeta), the toxic protein that creates brain plaques," said Dr. Ruoslahti. "Given the number of failed clinical studies that have sought to treat AD patients by targeting Abeta, it is clear that treatments will need to be given earlier--before amyloid plaques appear--or have to target entirely different pathways.

DAG has the potential to fill both roles -- identifying at risk individuals prior to overt signs of AD and targeted delivery of drugs to diseased areas of the brain. Perhaps CTGF itself can be a drug target in AD and other brain disorders linked to inflammation. We will just have to learn more about its role in these diseases."

Related Links:
Sanford-Burnham Prebys Medical Discovery Institute

Gold Member
Hematology Analyzer
Swelab Lumi
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
PSA Test
Human Semen Rapid Test
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.