Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Extracellular Collagen Modulates Tumor Progression and Metastasis

By LabMedica International staff writers
Posted on 05 Dec 2017
A recent paper detailed how factors in the tumor microenvironment induce the cancer to progress and metastasize.

Previous studies had suggested that the topographical organization of collagen within the tumor microenvironment modulated cancer cell migration and was independently predictive of progression to metastasis.

Investigators at the University of California, San Diego (USA) explored the relationships between collagen density, collagen architecture, cell migration behavior, gene expression, and metastatic potential. More...
To do this, they developed a three-dimensional collagen matrix model system designed to probe the physical basis of cancer cell migration responses to collagen matrix organization.

Results published in the November 21, 2017, online edition of the journal Nature Communications revealed that collagen matrices with small pores and short fibers conserved a transcriptional response and subsequent motility switch in cancer cells resulting in the formation of multicellular network structures. The response was not mediated by hypoxia, matrix stiffness, or bulk matrix density, but rather by matrix architecture-induced beta1-integrin upregulation. The set of genes, or gene module, which caused this behavior, was dubbed the collagen-induced network phenotype (CINP).

The investigators found that this CINP-induced behavior was consistent with phenotypic and molecular features of clinical vasculogenic mimicry (VM) – the formation of structures resembling blood vessels. Furthermore, they showed that the associated transcriptional response was conserved among cancer types in vitro and was predictive of patient survival in multiple clinical datasets for various tumor types. These findings linked a collagen-induced migration program to VM and suggested that this process could be broadly relevant to metastatic progression in solid human cancers.

"It is almost like the matrix is encoding the gene module," explained senior author Dr. Stephanie Fraley, professor of bioengineering at the University of California, San Diego. "The cells do not exhibit this behavior in traditional petri dishes. It is critical to have the cells surrounded by a three-dimensional environment that mimics what happens in the human body."

Related Links:
University of California, San Diego


New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Collection and Transport System
PurSafe Plus®
Laboratory Software
ArtelWare
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.