We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




MicroRNA Treatment Prompts Cardiomyocyte Proliferation

By LabMedica International staff writers
Posted on 11 Dec 2017
Print article
Image: A photomicrograph of green-stained, proliferating cardiomyocytes in a mouse heart after gel injection (Photo courtesy of the University of Pennsylvania).
Image: A photomicrograph of green-stained, proliferating cardiomyocytes in a mouse heart after gel injection (Photo courtesy of the University of Pennsylvania).
Working with a variety of mouse models, heart diseases researchers showed that a hydrogel delivery system could release a specific microRNA at the site of injury following a myocardial infarction where it induced cardiomyocyte proliferation and tissue regeneration.

MicroRNA-based therapies that target cardiomyocyte proliferation have great potential for the treatment of myocardial infarction. MicroRNAs (miRNAs) are a family of noncoding 19- to 25-nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

Following up previous studies showing that the miR-302/367 cluster regulated cardiomyocyte proliferation in the prenatal and postnatal heart, investigators at the University of Pennsylvania (Philadelphia, USA) developed an injectable hyaluronic acid hydrogel for the local and sustained delivery of miR-302 mimics to the heart.

The investigators injected this gel, into the heart muscles of three different populations of mice: (1) normal, healthy mice, (2) "Confetti mice," which had been genetically engineered so that individual cardiomyocytes randomly expressed one of four different fluorescent proteins, and (3) mice in which heart attacks were induced so that clinically relevant outcomes of the treatment could be studied. The encapsulated microRNAs were protected from degradation, maximizing the time period that they could be effective without the risk of damaging off-target cells.

Results published in the November 27, 2017, online edition of the journal Nature Biomedical Engineering revealed that a single injection of the hydrogel in the mouse heart led to local and sustained cardiomyocyte proliferation for two weeks. After myocardial infarction, gel–miR-302 injection caused local clonal proliferation and increased cardiomyocyte numbers in the border zone of the Confetti mouse model. In the Confetti mice, single red, yellow, or green cardiomyocytes progressed to clusters, ranging from two to eight cells of the same color.

The mice injected following induced heart attack showed improved recovery as compared to controls, including higher ejection fraction (more blood pumped with each beat) and smaller increases in heart size.

"We want to design the right material for a specific drug and application," said senior author Dr. Jason Burdick, professor of bioengineering at the University of Pennsylvania. "The most important traits of this gel are that it is shear-thinning and self-healing. Shear-thinning means it has bonds that can be broken under mechanical stress, making it more fluid and allowing it to flow through a syringe or catheter. Self-healing means that when that stress is removed, the gel's bonds re-form, allowing it to stay in place within the heart muscle."

"We are seeing a change in approaches for regenerative medicine, using alternatives to stem cell delivery," said Dr. Burdick. "Here, instead of introducing new cells that can have their own delivery challenges, we are simply turning on repair mechanisms in cells that survive injury in the heart and other tissues."

Related Links:
University of Pennsylvania

Gold Member
Hematology Analyzer
Swelab Lumi
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Liquid Based Cytology Production Machine
LBP-4032
New
Rocking Shaker
HumaRock

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.