We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Nanoparticles May Lead to Universal Antiviral Drug

By LabMedica International staff writers
Posted on 02 Jan 2018
Print article
Image: A molecular dynamics model showing a nanoparticle binding to the outer envelope of the human papillomavirus (Photo courtesy of Dr. Petr Kral, Ecole Polytechnique Fédérale de Lausanne).
Image: A molecular dynamics model showing a nanoparticle binding to the outer envelope of the human papillomavirus (Photo courtesy of Dr. Petr Kral, Ecole Polytechnique Fédérale de Lausanne).
A team of molecular virologists has developed a nanoparticle-based broad-spectrum antiviral agent that binds irreversibly to a large range of viruses and causes lethal structural deformations without affecting healthy tissue.

Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus–cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). However, the reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them.

To avoid the reversible binding problem, investigators at Ecole Polytechnique Fédérale de Lausanne (Switzerland) designed antiviral nanoparticles with long and flexible linkers that mimicked HSPG. These novel nanoparticles simulated the VAL repeating units and enabled strong and multivalent viral association that eventually led to irreversible viral deformation.

The investigators reported in the December 18, 2017, online edition of the journal Nature Materials that the efficacy of this proposed mechanism was supported by virucidal assays, electron microscopy images, and molecular dynamics simulations. The particles showed no cytotoxicity, and in vitro irreversibly blocked the activity of herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue, and Lentivirus. In addition the particles were active in vitro in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.

Related Links:
Ecole Polytechnique Fédérale de Lausanne

Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Histamine ELISA
Histamine ELISA
New
Thyroxine ELISA
T4 ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.