We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Genomic Study Links Potassium Levels to Regulation of BP

By LabMedica International staff writers
Posted on 04 Jan 2018
Print article
A recent paper described a study designed to examine different points of the human genome to determine where the genetic sequence linked serum potassium levels to modulation of blood pressure (BP).

Investigators at the University of Georgia (Athens, USA) performed genome-wide analyses to identify genomic loci that interacted with potassium to influence BP using single-marker and gene-based tests on Chinese participants of the GenSalt study (Genetic Epidemiology Network of Salt Sensitivity).

The initial GenSalt study, which was designed to evaluate gene-diet (sodium and potassium) interactions on BP regulation, was performed in rural areas in northern China from October 2003 to July 2005. The overall objective of the study was to identify susceptibility genes that influenced individual BP responses to dietary sodium and potassium intake in human populations. The specific aims were: (1) To localize and identify novel genes related to variation in BP responses to a low dietary sodium intake and a high dietary sodium intake; (2) To localize and identify novel genes related to variations in BP responses to oral potassium supplementation; and (3) To localize and identify novel genes related to BP responses to a cold pressor test. In addition, the GenSalt study localized and identified genes related to usual BP level and the risk of hypertension.

For the current study, the investigators analyzed data from1876 GenSalt participants. The average results of three urine samples were used to estimate potassium excretion, while nine BP measurements were taken using a random-zero sphygmomanometer. A total of 2.2 million single nucleotide polymorphisms were imputed using Affymetrix (Santa Clara, CA, USA) 6.0 genotype data and the Chinese Han of Beijing and Japanese of Tokyo HapMap reference panels.

Results published in the December 6, 2017, online edition of the journal Circulation: Cardiovascular Genetics revealed two genomic loci - one of which had never been identified - and six individual genes, all significantly associated with the regulation of blood pressure in the body.

“One of the major drawbacks of previous genetic studies of hypertension is that these studies did not explore the interactions between genes and environmental factors,” said senior author Dr. Changwei Li, assistant professor of biostatistics and epidemiology at the University of Georgia. “For example, some genes’ effect on blood pressure only manifests under certain environments. If environmental factors are not taken into account, these genes will not be identified for hypertension.”

“Findings from our study help to identify individuals who are particularly sensitive to dietary potassium as a way to reduce blood pressure, based on their genomic profiles,” said Dr. Li. “Subsequently, we could provide personalized suggestions to prevent disease based on their genotypes.”

Related Links:
University of Georgia
Affymetrix

New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA
New
Chemistry Analyzer
MS100

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.