We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Analysis of MS Astrocytes Reveals Decreased Cholesterol Synthesis Genes

By LabMedica International staff writers
Posted on 11 Jan 2018
Print article
Image: A photomicrograph (magnification 10x) of a demyelinating MS-lesion (Photo courtesy of Wikimedia Commons).
Image: A photomicrograph (magnification 10x) of a demyelinating MS-lesion (Photo courtesy of Wikimedia Commons).
By using a cell-specific and region-specific gene expression approach, neurodegenerative disease researchers discovered that a decrease in cholesterol synthesis gene expression in astrocytes was linked to impaired walking ability that characterizes multiple sclerosis (MS).

Multiple sclerosis (MS) is a demyelinating disease in which the insulating covers of nerve cells in the brain and spinal cord are damaged. This damage disrupts the ability of parts of the nervous system to communicate, resulting in a range of signs and symptoms, including physical, mental, and sometimes psychiatric problems. Specific symptoms can include double vision, blindness in one eye, muscle weakness, trouble with sensation, or trouble with coordination. MS takes several forms, with new symptoms either occurring in isolated attacks (relapsing forms) or building up over time (progressive forms). Between attacks, symptoms may disappear completely; however, permanent neurological problems often remain, especially as the disease advances.

Investigators at the University of California, Los Angeles (USA) suggested that neuroprotective treatments tailored for each disability may be more effective than nonspecific treatments aiming to reduce a composite of disabilities in clinical trials. Therefore, they used the MS model to apply a cell-specific and region-specific gene expression approach to discover targets in distinct neuroanatomic regions. In particular, this cell-specific and region-specific transcriptomics approach was used to determine gene expression changes in astrocytes in the most widely used MS model, experimental autoimmune encephalomyelitis (EAE).

Astrocyte-specific RNAs from various neuroanatomic regions were obtained using RiboTag technology. The RiboTag procedure allows simple and efficient isolation of ribosome-associated mRNAs from specific cell types in complex tissues, including brain. The RiboTag approach takes advantage of the stability of the complexes that are formed when mRNA is productively assembled with the ribosome during translation of proteins; these mRNA-ribosome complexes are stable to freezing and the snap frozen tissue can be stored at minus 80 degrees Celsius for later analysis.

The investigators reported in the December 26, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences that sequencing and bioinformatics analyses showed that EAE-induced gene expression changes differed between neuroanatomic regions when comparing astrocytes from spinal cord, cerebellum, cerebral cortex, and hippocampus. The top gene pathways that were changed in astrocytes from spinal cord during chronic EAE involved decreases in expression of cholesterol synthesis genes while immune pathway gene expression in astrocytes was increased. When treated with a drug that increased expression in cholesterol synthesis genes, the MS mice demonstrated improved walking ability.

The investigators concluded that, "This proof-of-concept cell-specific and region-specific gene expression approach can provide potential treatment targets in distinct neuroanatomic regions during multifocal neurological diseases."

Related Links:
University of California, Los Angeles

Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.