We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Removable Device Developed for Treatment of Type I Diabetes

By LabMedica International staff writers
Posted on 18 Jan 2018
A team of biomedical engineers has devised a novel technique for implantation and removal of living pancreatic beta cells in order to control insulin levels in patients with type I diabetes.

Cell encapsulation has been shown to hold promise for effective, long-term treatment of type I diabetes. More...
However, various obstacles have delayed the adaptation of this approach for clinical applications. For example, there is an unmet need for an encapsulation system that is capable of delivering sufficient cell mass while still allowing convenient retrieval or replacement.

To fill this gap, investigators at Cornell University (Ithaca, NY, USA) developed a simple cell encapsulation system that is readily scalable and conveniently retrievable. The key to this design was to engineer a highly wettable, Ca2+-releasing nanoporous polymer thread that promoted uniform in situ cross-linking and strong adhesion of a thin layer of alginate hydrogel around the thread. This method – named TRAFFIC (Thread-Reinforced Alginate Fiber for Islets enCapsulation) by the investigators - was used to implant hundreds of thousands of islet cells into animal diabetes models. The cells were protected by a thin hydrogel coating and the coated cells were attached to a polymer thread that could be removed or replaced easily when the cells had outlived their usefulness.

Results published in the December 26, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences revealed that the device provided immunoprotection of rat islets in immunocompetent C57BL/6 mice in a short-term (one-month) study, similar to neat alginate fibers. However, the mechanical property of the device, critical for handling and retrieval, was much more robust than the neat alginate fibers due to the reinforcement of the central thread. It also had facile mass transfer due to the short diffusion distance.

The investigators demonstrated the therapeutic potential of the device through the correction of chemically induced diabetes in C57BL/6 mice using rat islets for three months as well as in immunodeficient SCID-Beige mice using human islets for four months. They further showed, as a proof of concept, the scalability and retrievability of the device in dogs. After one month of implantation in dogs, the device could be rapidly retrieved through a minimally invasive laparoscopic procedure.

"The ability to remove the transplant is key because of its potential to form tumors," said senior author Dr. Minglin Ma, assistant professor biological and environmental engineering at Cornell University. "When they fail or die, they need to come out. You do not want to put something in the body that you cannot take out. With our method, that is not a problem."

Related Links:
Cornell University


New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Portable Electronic Pipette
Mini 96
Gel Cards
DG Gel Cards
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: The rapid diagnostic test is being piloted across three UK hospitals (Photo courtesy of Imperial College Healthcare)

15-Minute Blood Test Diagnoses Life-Threatening Infections in Children

Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.