We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Removable Device Developed for Treatment of Type I Diabetes

By LabMedica International staff writers
Posted on 18 Jan 2018
Print article
Image: An illustration of TRAFFIC (Thread-Reinforced Alginate Fiber for Islets enCapsulation), a novel removable implant device for control of type I diabetes (Photo courtesy of Cornell University).
Image: An illustration of TRAFFIC (Thread-Reinforced Alginate Fiber for Islets enCapsulation), a novel removable implant device for control of type I diabetes (Photo courtesy of Cornell University).
A team of biomedical engineers has devised a novel technique for implantation and removal of living pancreatic beta cells in order to control insulin levels in patients with type I diabetes.

Cell encapsulation has been shown to hold promise for effective, long-term treatment of type I diabetes. However, various obstacles have delayed the adaptation of this approach for clinical applications. For example, there is an unmet need for an encapsulation system that is capable of delivering sufficient cell mass while still allowing convenient retrieval or replacement.

To fill this gap, investigators at Cornell University (Ithaca, NY, USA) developed a simple cell encapsulation system that is readily scalable and conveniently retrievable. The key to this design was to engineer a highly wettable, Ca2+-releasing nanoporous polymer thread that promoted uniform in situ cross-linking and strong adhesion of a thin layer of alginate hydrogel around the thread. This method – named TRAFFIC (Thread-Reinforced Alginate Fiber for Islets enCapsulation) by the investigators - was used to implant hundreds of thousands of islet cells into animal diabetes models. The cells were protected by a thin hydrogel coating and the coated cells were attached to a polymer thread that could be removed or replaced easily when the cells had outlived their usefulness.

Results published in the December 26, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences revealed that the device provided immunoprotection of rat islets in immunocompetent C57BL/6 mice in a short-term (one-month) study, similar to neat alginate fibers. However, the mechanical property of the device, critical for handling and retrieval, was much more robust than the neat alginate fibers due to the reinforcement of the central thread. It also had facile mass transfer due to the short diffusion distance.

The investigators demonstrated the therapeutic potential of the device through the correction of chemically induced diabetes in C57BL/6 mice using rat islets for three months as well as in immunodeficient SCID-Beige mice using human islets for four months. They further showed, as a proof of concept, the scalability and retrievability of the device in dogs. After one month of implantation in dogs, the device could be rapidly retrieved through a minimally invasive laparoscopic procedure.

"The ability to remove the transplant is key because of its potential to form tumors," said senior author Dr. Minglin Ma, assistant professor biological and environmental engineering at Cornell University. "When they fail or die, they need to come out. You do not want to put something in the body that you cannot take out. With our method, that is not a problem."

Related Links:
Cornell University

New
Gold Member
LEISHMANIA Test
LEISHMANIA ELISA
New
Gold Member
Chagas Disease Test
CHAGAS Cassette
New
PROM Test
AMNIOQUICK DUO
New
DNA Extraction Kit
Ron’s Gel Extraction Mini Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.