We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Genetically Engineered Bacteria Inhibit Cancer in Model

By LabMedica International staff writers
Posted on 23 Jan 2018
Print article
Image: Colorectal cancer was blocked in mice fed with a genetically engineered microbe and a cruciferous vegetable-rich diet (Photo courtesy of Dr. Chun-Loong Ho, National University of Singapore).
Image: Colorectal cancer was blocked in mice fed with a genetically engineered microbe and a cruciferous vegetable-rich diet (Photo courtesy of Dr. Chun-Loong Ho, National University of Singapore).
A novel method for preventing and treating colorectal cancer is based on a genetically engineered bacterium that binds to the cancer cells and converts chemicals in foods that have been ingested into compounds that kill the tumor.

Chemoprevention, which is the use of medication to prevent cancer, can be augmented by the consumption of vegetables enriched with natural metabolites. However, chemopreventive metabolites are typically inactive and have low bioavailability and poor host absorption.

To increase the potential of the chemopreventive approach, investigators at the National University of Singapore, Yong Loo Lin School of Medicine examined the possibility of engineering a commensal microbe to prevent carcinogenesis and promote the regression of colorectal cancer through a cruciferous vegetable diet.

Towards this end, they created an engineered form of Escherichia coli Nissle, a harmless bacterium found in the gut. The investigators showed that this modified E. coli bound specifically to the heparan sulphate proteoglycan on colorectal cancer cells and secreted the enzyme myrosinase. This enzyme transformed host-ingested glucosinolates, which are natural components of cruciferous vegetables such as broccoli and Brussel sprouts, to sulforaphane. Sulforaphane is a compound with known anticancer activity within the isothiocyanate group of organosulfur compounds. It is produced when the enzyme myrosinase transforms glucoraphanin, a glucosinolate, into sulforaphane upon damage to the plant (such as from chewing), which allows the two compounds to mix and react.

The investigators reported in the January 10, 2018, online edition of the journal Nature Biomedical Engineering that a mixture of the engineered bacteria and a broccoli extract killed more than 95% of colorectal cancer cells in vitro. Moreover, the mixture had no effect on other types of cancer cells such as breast or stomach. Normal cells were not affected by the toxin, so the system was specific for colorectal cancer cells.

The bacteria-cruciferous vegetable combination was found to reduce tumor numbers by 75% in mice with colorectal cancer. Furthermore, tumors that were detected in these mice were three times smaller than those in control mice, which were not fed with the mixture.

Senior author Dr. Matthew Chang, associate professor of biochemistry at the National University of Singapore, Yong Loo Lin School of Medicine said, "One exciting aspect of our strategy is that it just capitalizes on our lifestyle, potentially transforming our normal diet into a sustainable, low-cost therapeutic regimen. We hope that our strategy can be a useful complement to current cancer therapies."

Related Links:
National University of Singapore

New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Automated Blood Typing System
IH-500 NEXT
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA
New
Nuclear Matrix Protein 22 Test
NMP22 Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.