We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Soft Hydrogel Structures Developed for Organ Regeneration Studies

By LabMedica International staff writers
Posted on 25 Jan 2018
Print article
Image: The structure of a single unit and how eight units fit together (above); electron microscopic views of a printed and set eight-unit structure (below) (Photo courtesy of Imperial College London).
Image: The structure of a single unit and how eight units fit together (above); electron microscopic views of a printed and set eight-unit structure (below) (Photo courtesy of Imperial College London).
A team of British bioengineers has developed a novel cryogenics-based three-dimensional printing technique for producing soft biological structures that mimic the mechanical properties of organs such as the brain and lungs.

The technique, which was described in the November 24, 2017, online edition of the journal Scientific Reports, used dry ice in an isopropanol bath to rapidly cool a hydrogel ink as it was extruded from a three-dimensional printer. The ink was a composite hydrogel of poly(vinyl) alcohol (PVA) and Phytagel (a water-soluble anionic polysaccharide produced by the bacterium Sphingomonas elodea). After being thawed, the gel that had been formed was as soft as body tissues, but did not collapse under its own weight, which had been a problem plaguing similar techniques in the past.

Having created the super soft hydrogel, the investigators at Imperial College London (United Kingdom) sought to: (i) provide mechanical evidence showing the three-dimensional printed material mimicked real brain tissue, providing the same response as the casted material, through unconfined compression tests, (ii) demonstrate the capabilities of this printing technique by achieving hollow three-dimensional printed structures, whose continuity through the layers had also been assessed using scanning electron microscopy (SEM) analysis, and (iii) evaluate the viability of cells in direct contact with the printed material.

The method was validated by showing that the three-dimensional printed materials were well matched to the cast-molded equivalents in terms of mechanical properties and microstructure. A preliminary biological evaluation on the three-dimensional printed material, coated with collagen type I, poly-L-lysine, and gelatin, was performed by seeding human dermal fibroblasts. Cells showed good attachment and viability on the collagen-coated three-dimensional printed hydrogel.

Senior author Dr. Antonio Elia Forte, a researcher in the department of bioengineering at Imperial College London, said, "Cryogenics is the novel aspect of this technology - it uses the phase change between liquid and solid to trigger polymerization and create super soft objects that can hold their shape. This means that the technology has a wide variety of possible uses."

Related Links:
Imperial College London

Gold Member
Hematology Analyzer
Swelab Lumi
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
FLU/RSV Test
Humasis FLU/RSV Combo
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.