We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Gene Editing Reverses Fragile X Syndrome in Model

By LabMedica International staff writers
Posted on 05 Mar 2018
Print article
Image: The location of the FMR1 gene on the X chromosome (Photo courtesy of Wikimedia Commons).
Image: The location of the FMR1 gene on the X chromosome (Photo courtesy of Wikimedia Commons).
A modified version of the CRISPR/Cas9 gene-editing tool was used to correct the mutation that causes fragile X syndrome.

Fragile X syndrome is a genetic disorder that occurs as a result of a mutation of the fragile X mental retardation 1 (FMR1) gene on the X chromosome, most commonly an increase in the number of CGG (cytosine, guanine, guanine) trinucleotide repeats in the 5' untranslated region of FMR1. Mutation at that site is found in one out of about every 2000 males and one out of about every 259 females. Incidence of the disorder itself is about one in every 3600 males and one in 4000–6000 females.

In unaffected individuals, the FMR1 gene contains five to 44 repeats of the sequence CGG, most commonly 29 or 30 repeats. From 45-54 repeats is considered a "grey zone", while a pre-mutation allele is generally considered to be between 55 and 200 repeats in length. Individuals with fragile X syndrome have a full mutation of the FMR1 allele, with over 200 CGG repeats. In these individuals with a repeat expansion greater than 200, there is methylation of the CGG repeat expansion and FMR1 promoter, leading to the silencing of the FMR1 gene and a lack of its product. This methylation of FMR1 is believed to result in constriction of the X chromosome, which appears "fragile" under the microscope at that point, a phenomenon that gave the syndrome its name.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. Since 2013, the CRISPR/Cas9 system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

Investigators at the Whitehead Institute for Biomedical Research (Cambridge, MA, USA) reported in the February 15, 2018, online edition of the journal Cell that they used the dCas9-Tet1/single guide RNA version of CRISPR/Cas9 to reverse hypermethylation of the FRM1 gene in induced pluripotent stem cells that had been derived from fragile X syndrome individuals. The result of editing was a reactivated gene that rescued fragile X syndrome neurons. FMR1 expression in edited neurons was maintained for more than three months in vivo after engrafting into the mouse brain.

"These results are quite surprising - this work produced almost a full restoration of wild type expression levels of the FMR1 gene," said senior author Dr. Rudolf Jaenisch, professor of biology at the Massachusetts Institute of Technology. "Often when scientists test therapeutic interventions, they only achieve partial restoration, so these results are substantial. This work validates the approach of targeting the methylation on genes, and it will be a paradigm for scientists to follow this approach for other diseases."

Related Links:
Whitehead Institute for Biomedical Research
Massachusetts Institute of Technology

Gold Member
Hematology Analyzer
Swelab Lumi
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.