We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Innovations Increase Sensitivity of CTC Detection

By LabMedica International staff writers
Posted on 28 Mar 2018
Print article
Image: A version of the CapioCyte technology used in the study, which directs the flow of a small amount of patient\'s blood through a chamber lined with tumor cell-capturing proteins (Photo courtesy of Michael Poellman, University of Wisconsin).
Image: A version of the CapioCyte technology used in the study, which directs the flow of a small amount of patient\'s blood through a chamber lined with tumor cell-capturing proteins (Photo courtesy of Michael Poellman, University of Wisconsin).
Innovations in the methodology used to collect circulating tumor cells (CTCs) from blood specimens will allow reliable monitoring of CTC changes during and after treatment.

The detection of CTCs may have important prognostic and therapeutic implications, but because their numbers can be very small, these cells are not easily detected. It has been estimated that among the cells that have detached from a primary tumor, only 0.01% can form metastases. Circulating tumor cells are found in frequencies on the order of one to 10 CTCs per milliliter of whole blood in patients with metastatic disease. For comparison, one milliliter of blood contains a few million white blood cells and a billion red blood cells. This low frequency, associated to difficulty of identifying cancerous cells, means that a key component of understanding CTCs biological properties require technologies and approaches capable of isolating one CTC per milliliter of blood, either by enrichment, or with enrichment-free assays that identify all CTC subtypes in sufficiently high definition to satisfy diagnostic pathology image-quantity requirements in patients with a variety of cancer types.

Towards this end, investigators at the University of Wisconsin (Madison, USA) examined the effects of multivalent binding and biomimetic cell rolling on the sensitivity and specificity of CTC capture. They also investigated the clinical significance of CTCs and their kinetic profiles in cancer patients undergoing radiotherapy (RT) treatment.

For the study peripheral blood was collected prospectively at up to five time points from 24 patients with head-and-neck, prostate, rectal, or cervical cancer who were undergoing radiation therapy (RT), with or without chemotherapy.

CTC capture was accomplished using the Capio Biosciences (Madison, WI, USA) CapioCyte nanotechnology-based assay system functionalized with anti-EpCAM (Epithelial cell adhesion molecule), anti-HER-2 (human epidermal growth factor receptor 2), and anti-EGFR (Epidermal growth factor receptor).

The CapioCyte platform utilizes proprietary chips that are inserted into a specially designed flow chamber. Samples are then passed through this flow chamber at a precisely controlled rate. The surface of the chip is specially treated to induce biomimetic cell rolling to enable cell capture utilizing antibodies bound to dendrimers. Cell rolling mimics the physiological interaction of CTCs and blood vessel walls, slowing movement and recruiting and enriching cells within the flow chamber. Once captured, CTCs can either be recovered for post capture analysis such as RNA-Seq, or they can be automatically stained for subsequent fluorescence image capture.

Results published in the March 15, 2018, online edition of the journal Clinical Cancer Research revealed that the CapioCyte system was able to detect CTCs in all 24 cancer patients. Multivalent binding via poly(amidoamine) dendrimers further improved capture sensitivity. The cell rolling effect improved CTC capture specificity by up to 38%. CTCs declined throughout RT in patients with complete clinical and/or radiographic response, in contrast to an elevation in CTCs at mid or post-RT in the two patients with known pathologic residual disease.

"The absolute numbers of CTCs do not represent too much because there is too much variation individually, but the more important thing we found was the trend - how the CTC numbers change over time upon treatment. So, for example, we have shown that the CTCs go down when the patients are responding really well to the radiotherapy," said senior author Dr. Seungpyo Hong, professor of pharmacy at the University of Wisconsin. "What makes us excited in particular is we can see the direct impact. As a researcher, if you develop a new technology and it can directly help people, that is going to be the most rewarding experience – it is really exciting."

Related Links:
University of Wisconsin
Capio Biosciences

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
MTHFR Mutation Test
REALQUALITY THROMBO MTHFR
New
PROM Test
AMNIOQUICK DUO

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.