We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nano-Imaging Reveals Links to Regulation of Bone Mineralization

By LabMedica International staff writers
Posted on 16 Apr 2018
Print article
Image: Calcium phosphate mineralization occurs in both extra- and intrafibrillar spaces of collagen (left and right images, respectively). The confined collagen structure contributes to reducing the thermodynamic energy barrier to intrafibrillar nucleation for bone mineralization (Photo courtesy of Washington University).
Image: Calcium phosphate mineralization occurs in both extra- and intrafibrillar spaces of collagen (left and right images, respectively). The confined collagen structure contributes to reducing the thermodynamic energy barrier to intrafibrillar nucleation for bone mineralization (Photo courtesy of Washington University).
A team of bioengineers applied a hi-tech nano-imagining technique to determine the mechanisms involved in the initialization and regulation of the process of bone mineralization.

Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors.

To develop a better understanding of the mechanisms underlying bone mineralization, investigators at Washington University (St. Louis, Mo, USA) turned to the Advanced Photon Source at the Argonne National Laboratory (Lemont, IL, USA). They used this tool to apply the technique of in situ small-angle X-ray (SAXS) scattering in order to study calcium phosphate nucleation in the collagen gap (a space about two nanometers high by 40 nanometers wide).

They investigators described in the March 6, 2018, online edition of the journal Nature Communications the results they had obtained using in situ X-ray scattering observations and classical nucleation theory. They reported obtaining nucleation energy barriers to intra- and extrafibrillar mineralization (IM and EM). Polyaspartic acid, an extrafibrillar nucleation inhibitor, increased interfacial energies between nuclei and mineralization fluids. In contrast, the confined gap spaces inside collagen fibrils lowered the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guided the two-dimensional morphology and structure of bioapatite and changed the nucleation pathway by reducing the total energy barrier.

“When we understand how new bone forms, we can modulate where it should form,” said senior author Dr. Young-Shin Jun, professor of energy and environmental and chemical engineering at Washington University. “Previously, we thought that collagen fibrils could serve as passive templates, however, this study confirmed that collagen fibrils play an active role in biomineralization by controlling nucleation pathways and energy barriers. If we can tweak the chemistry and send signals to form bone minerals faster or stronger, that would be helpful to the medical field.”

“Confined space is a somewhat exotic space that we have not explored much, and we are always thinking about new material formation without any limitation of space,” said Dr. Jun. “However, there are so many confined spaces, such as pores in geomedia in subsurface environments or in water filtration membranes, where calcium carbonate or calcium sulfate form as scale. This paper is a snapshot of one health aspect, but the new knowledge can be applied broadly to energy systems and water systems.”

Related Links:
Washington University
Argonne National Laboratory

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Troponin I Test
Quidel Triage Troponin I Test
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.