We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Protein Droplets Stimulate Neurodegenerative Fibril Clumping

By LabMedica International staff writers
Posted on 03 May 2018
Print article
Image: Dense FUS protein fibrils form in the absence of nuclear-import receptors (NIRs, left), but are disrupted when NIRs are present (right) (Photo courtesy of Dr. James Shorter, University of Pennsylvania).
Image: Dense FUS protein fibrils form in the absence of nuclear-import receptors (NIRs, left), but are disrupted when NIRs are present (right) (Photo courtesy of Dr. James Shorter, University of Pennsylvania).
A team of neurodegenerative disease researchers has identified a molecular mechanism that prevents or reverses the formation of insoluble protein aggregates that characterize several brain disorders, including frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS).

Members of the class of RNA-binding proteins (RBPs) with prion-like domains (PrLDs) experience a phase transition to a functional liquid form. In this form, RBPs can mature into abnormal hydrogels composed of pathological fibrils that underpin fatal neurodegenerative disorders. Furthermore, several nuclear RBPs with PrLDs, including TDP-43, FUS, hnRNPA1, and hnRNPA2, mistakenly associate with cytoplasmic inclusions in neurodegenerative disorders, and mutations in their PrLDs can accelerate fibril formation and cause disease.

Investigators at the University of Pennsylvania (Philadelphia, USA) investigated the role of RBPs in the neurodegenerative disease process. They reported in the April 19, 2018, online edition of the journal Cell that nuclear-import receptors (NIRs) specifically chaperoned and potently disaggregated wild-type and disease-linked RBPs bearing a nuclear-localization sequence (NLS). A nuclear localization sequence is an amino acid signal that "tags" a protein for import into the cell nucleus by nuclear transport.

The investigators added NIRs to aggregates of TDP-43 and FUS proteins. They found that by increasing the concentration of NIRs in vitro, clumps of RBPs quickly dissolved. NIRs also dissolved cytoplasmic clumps in cells, and functional RBPs were returned to the nucleus. In addition, when the expression of NIRs was increased in fruit fly disease models, lifespan of the insects was extended and degeneration was reduced.

“Clumps that form from these disease proteins are composed of sticky fibrils that damage nerve cells,” said senior author Dr. James Shorter, associate professor of biochemistry and biophysics at the University of Pennsylvania. “We want to reverse the formation of these clumps and put the RNA-binding proteins back in their proper place, inside the nucleus.”

Related Links:
University of Pennsylvania

New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Human Insulin CLIA
Human Insulin CLIA Kit
New
Auto-Chemistry Analyzer
CS-1200

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.