We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Bone Marrow Model Promotes Growth of Blood Cell Progenitors

By LabMedica International staff writers
Posted on 14 Jun 2018
Print article
Image: A scanning electron microscopy (SEM) images confirm the deposition of an extracellular matrix, which embeds cells, presumably of both stromal and blood origins (Photo courtesy of the University of Basel).
Image: A scanning electron microscopy (SEM) images confirm the deposition of an extracellular matrix, which embeds cells, presumably of both stromal and blood origins (Photo courtesy of the University of Basel).
A recently developed culture technique has enabled researchers to establish conditions that mimic human bone marrow niches and support the maintenance of some hematopoietic stem and progenitor cell lines.

In adult humans, hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow (BM) microenvironment. The understanding of human hematopoiesis and the associated niche biology remains limited, due to difficulties in obtaining human source materials and limitations of existing in vitro culture models. The establishment of a functionalized in vitro BM system would offer an experimentally accessible and tunable platform to study human hematopoiesis.

In an effort to create such an in vitro BM system, investigators at the University of Basel (Switzerland) and ETH Zurich (Switzerland) developed an artificial tissue model system in which human blood stem cells remained functional for a prolonged period of time.

The system was described in the June 4, 2018, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences. A perfusion bioreactor vessel was used to house a three-dimensional ceramic-based human BM analog, which recapitulated some of the hematopoietic niche elements. The model system comprised the bone-like scaffold, which was functionalized by human stromal and osteoblastic cells and by the extracellular matrix deposited by the cells during perfusion culture in bioreactors. The resulting tissue exhibited compositional and structural features of human BM while supporting the maintenance of HSPCs. This functionality was due to the compartmentalization of phenotypes in the bioreactor system, where committed blood cells are released into the liquid phase and HSPCs preferentially resided within the engineered BM tissue, establishing physical interactions with the stromal compartment.

In addition, the functional BM model enabled the investigators to demonstrate the possibility of perturbing HSPCs’ behavior within the model's three-dimensional niches by molecular customization or injury simulation.

"We could use bone and bone marrow cells from patients to create an in vitro model of blood diseases such as leukemia, for example. Importantly, we could do this in an environment that consists exclusively of human cells and which incorporates conditions tailored to the specific individual," said senior author Dr. Ivan Martin, professor of tissue engineering at the University of Basel and contributing author Dr. Timm Schroeder, professor for cell systems dynamics at ETH Zurich.

Related Links:
University of Basel
ETH Zurich

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.