We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Immunosuppressing Microparticles Prevents Rejection of Transplanted Cells

By LabMedica International staff writers
Posted on 20 Jun 2018
Print article
Image: Immunomodulatory signal presentation via synthetic hydrogel material promotes generation of T regulatory cells (green) in the local graft microenvironment (CD3+ T-cells in red, and nuclei staining in blue) after implantation into a clinically relevant transplant model for the treatment of type I diabetes (Photo courtesy of the Georgia Institute of Technology).
Image: Immunomodulatory signal presentation via synthetic hydrogel material promotes generation of T regulatory cells (green) in the local graft microenvironment (CD3+ T-cells in red, and nuclei staining in blue) after implantation into a clinically relevant transplant model for the treatment of type I diabetes (Photo courtesy of the Georgia Institute of Technology).
A novel potential treatment approach for type I diabetes is based on transplantation of insulin-producing pancreatic islet cells together with synthetic hydrogel microparticles that contain the immune system modulator protein Fas ligand (FasL).

Fas ligand (FasL or CD95L) is a type-II transmembrane protein that belongs to the tumor necrosis factor (TNF) family. Binding of FasL to its receptor induces apoptosis. Fas ligand/receptor interactions play an important role in the regulation of the immune system and the progression of cancer.

Islet transplantation is a promising therapy for type I diabetes. However, chronic immunosuppression to control rejection of allogeneic islets induces morbidities and impairs islet function. T effector cells are responsible for islet allograft rejection and express Fas death receptors following activation, becoming sensitive to Fas-mediated apoptosis.

In order to prolong survival of allogeneic islet grafts in diabetic mice, investigators at the University of Louisville (KY, USA) and the Georgia Institute of Technology (Atlanta, USA) harvested islets from cadavers and simply mixed them with hydrogel particles in the operating room for delivery to the diabetic mice. The islets were not modified and the immune system was not suppressed. The polymer hydrogel particles were about 150 microns in diameter, about the same size as the islet cells. The particles had been designed to capture recombinant FasL protein on their surface, where the protein could be "seen" by the effector cells.

Results published in the June 4, 2018, online edition of the journal Nature Materials revealed that this localized immunomodulation approach using microgels presenting an apoptotic form of the Fas ligand with streptavidin (SA-FasL) resulted in prolonged survival of allogeneic islet grafts in diabetic mice. A short course of rapamycin treatment boosted the immunomodulatory efficacy of SA-FasL microgels, resulting in acceptance and function of allografts for a period of over 200 days. Following treatment, the animals functioned normally and were cured from diabetes while retaining full immune system functionality.

“We have been able to demonstrate that we can create a biomaterial that interrupts the body’s desire to reject the transplant, while not requiring the recipient to remain on continuous standard immunosuppression,” said senior author Dr. Haval Shirwan, professor of microbiology and immunology at the University of Louisville. “We anticipate that further study will demonstrate potential use for many transplant types, including bone marrow and solid organs.”

Related Links:
University of Louisville
Georgia Institute of Technology

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette
New
Vaginitis Test
Allplex Vaginitis Screening Assay

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.