We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mitochondrial DNA Depletion Linked to Depletion Syndromes

By LabMedica International staff writers
Posted on 02 Aug 2018
Print article
Image: The mouse in the center photo shows aging-associated skin wrinkles and hair loss after two months of mitochondrial DNA depletion. That same mouse, right, shows reversal of wrinkles and hair loss one month later, after mitochondrial DNA replication was resumed. The mouse on the left is a normal control, for comparison (Photo courtesy of the University of Alabama).
Image: The mouse in the center photo shows aging-associated skin wrinkles and hair loss after two months of mitochondrial DNA depletion. That same mouse, right, shows reversal of wrinkles and hair loss one month later, after mitochondrial DNA replication was resumed. The mouse on the left is a normal control, for comparison (Photo courtesy of the University of Alabama).
Physiological deterioration due to depletion of mitochondrial DNA, such as markers of aging like wrinkled skin and hair loss, was shown to be reversed by restoration of normal mitochondrial DNA levels and function.

Mitochondrial DNA (mtDNA) depletion is involved in mtDNA depletion syndromes, mitochondrial diseases, aging and aging-associated chronic diseases and other human pathologies such as cardiovascular disease, diabetes, age-associated neurological disorders and cancer.

To study the involvement of mitochondrial DNA in these processes, investigators at the University of Alabama (Birmingham, USA) created a mouse model with a dominant-negative mutation in the polymerase domain of the POLG1 (DNA polymerase gamma 1, accessory subunit) gene, which induced depletion of mtDNA in various tissues. The mutation in this mouse model was induced by addition of the antibiotic doxycycline to the food or drinking water, which caused depletion of mitochondrial DNA, as the enzyme to replicate mtDNA was inactivated.

The investigators reported in the July 20, 2018, online edition of the journal Cell Death and Disease that these "mtDNA-depleter" mice showed reduced mtDNA content, reduced mitochondrial gene expression, and instability of supercomplexes involved in oxidative phosphorylation (OXPHOS) resulting in reduced OXPHOS enzymatic activities. They demonstrated that ubiquitous depletion of mtDNA in mice led to predominant and profound effects on the skin resulting in wrinkles and visual hair loss with an increased number of dysfunctional hair follicles and inflammatory responses.

Removal of doxycycline from the diet turned off mutant POLG1 transgene expression, which restored mitochondrial function, as well as normalizing the skin and hair, to wild-type levels.

“To our knowledge, this observation is unprecedented,” said senior author Dr. Keshav Singh, professor of genetics at the University of Alabama. “This mouse model should provide an unprecedented opportunity for the development of preventive and therapeutic drug development strategies to augment the mitochondrial functions for the treatment of aging-associated skin and hair pathology and other human diseases in which mitochondrial dysfunction plays a significant role.”

Related Links:
University of Alabama

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
New
Respiratory QC Panel
Assayed Respiratory Control Panel

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.