We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel CDK9 Inhibitor Prevents Cancer Growth

By LabMedica International staff writers
Posted on 06 Nov 2018
Print article
Image: The structure of CDK9 (cyclin-dependent kinase 9) protein (Photo courtesy of Wikimedia Commons).
Image: The structure of CDK9 (cyclin-dependent kinase 9) protein (Photo courtesy of Wikimedia Commons).
Blocking the activity of cyclin-dependent kinase 9 (CDK9) has been shown to be a way to reactivate tumor suppressor genes silenced be growing tumors, which could spur development of chemotherapeutic agents designed to specifically target this enzyme.

CDK9 protein is a member of the cyclin-dependent kinase (CDK) enzyme family, which comprises important cell cycle regulators. This kinase is a component of the multiprotein complex TAK/P-TEFb, which is an elongation factor for RNA polymerase II-directed transcription and functions by phosphorylating the C-terminal domain of the largest subunit of RNA polymerase II (RNAPII).

Investigators at Temple University (Philadelphia, PA, USA) employing a live cell drug screening technique with genetic confirmation discovered that CDK9 inhibition reactivated epigenetically silenced genes in cancer, leading to restored tumor suppressor gene expression, cell differentiation, and activation of endogenous retrovirus genes. CDK9 inhibition dephosphorylated the protein BRG1, which contributed to gene reactivation. Additionally, CDK9 inhibition sensitized cancer cells to the immune checkpoint inhibitor alpha-PD-1 in vivo, making it an excellent target for epigenetic therapy of cancer.

The investigators also reported in the October 25, 2018, online edition of the journal Cell that they had developed a highly selective CDK9 inhibitor (MC180295) that had broad anti-cancer activity in vitro and was effective in in vivo cancer models. This new drug was shown to be highly selective, potentially avoiding the side effects associated with inhibiting the cell cycle.

"In addition to reactivating tumor suppressor genes, CDK9 inhibition induces sensitivity to the immune checkpoint inhibitor alpha-PD-1 in vivo," said senior author Dr. Jean-Pierre Issa, professor of medicine at Temple University. "It is an excellent target for epigenetic cancer therapy."

Related Links:
Temple University

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit
New
Piezoelectric Micropump
Disc Pump

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.