We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Method Eliminates Unwanted Neurons from Cultures of Kidney Organoids

By LabMedica International staff writers
Posted on 26 Nov 2018
A method has been reported that is able to eliminate more than 90% of unwanted neurons from cultures of stem cell-generated kidney cell organoids.

Kidney organoids derived from human pluripotent stem cells have great utility for investigating organ development and disease mechanisms and, potentially, as a replacement tissue source. More...
However, it is not clear how closely organoids derived using current protocols replicate the adult human kidney.

To clarify this issue, investigators at Washington University (St. Louis, MO, USA) compared two directed differentiation protocols - starting from embryonic stem cells or from induced pluripotent stem cells - using single-cell transcriptomic analysis of 83,130 cells from 65 organoids. These results were matched with single-cell transcriptomes of fetal and adult kidney cells.

Results published in the November 15, 2018, online edition of the journal Cell Stem Cell revealed that both protocols generated a diverse range of kidney cells with differing ratios, but organoid-derived cell types were immature, and 10% to 20% of cells were not kidney cells.

The investigators found that brain-derived neurotrophic factor (BDNF) and its receptor neurotrophic tyrosine kinase, receptor, type 2 (NTRK2) were expressed in the neuronal lineage during organoid differentiation. BDNF is a protein that acts on certain neurons of the central nervous system and the peripheral nervous system, helping to support the survival of existing neurons, and encourage the growth and differentiation of new neurons and synapses. The TrkB receptor is encoded by the NTRK2 gene and is a member of a receptor family of tyrosine kinases. The activation of the BDNF-TrkB pathway is important in the development of short-term memory and the growth of neurons.

Further analysis revealed that by inhibiting the BDNF-NTRK2 pathway, it was possible to improve organoid formation by reducing neurons by 90% without affecting kidney differentiation.

“There is a lot of enthusiasm for growing organoids as models for diseases that affect people,” said senior author Dr. Benjamin D. Humphreys, professor of nephrology at Washington University. “But scientists have not fully appreciated that some of the cells that make up those organoids may not mimic what we would find in people. The good news is that with a simple intervention, we could block most of the rogue cells from growing. This should really accelerate our progress in making organoids better models for human kidney disease and drug discovery, and the same technique could be applied to targeting rogue cells in other organoids.”

“Progress to develop better treatments for kidney disease is slow because we lack good models,” said Dr. Humphreys. “We rely on mice and rats, and they are not little humans. There are many examples of drugs that have done magically well at slowing or curing kidney disease in rodents but failed in clinical trials. So, the notion of channeling human stem cells to organize into a kidney-like structure is tremendously exciting because many of us feel that this potentially eliminates that "lost in translation" aspect of going from a mouse to a human.”

Related Links:
Washington University


New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Portable Electronic Pipette
Mini 96
New
Human Estradiol Assay
Human Estradiol CLIA Kit
New
Gold Member
Rapid AKI Test
Acute Kidney Injury (AKI) Array (4-plex)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The study has linked blood proteins to Alzheimer’s disease and memory loss (Photo courtesy of Shutterstock)

Blood Test Could Detect Proteins Linked to Alzheimer's Disease and Memory Loss

Alzheimer’s disease has long been associated with sticky amyloid plaques in the brain, but these markers alone do not fully explain the memory loss and cognitive decline patients experience.... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.