We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Tracer Cardiomyocytes Generated by Stem Cell Modification

By LabMedica International staff writers
Posted on 03 Jan 2019
Print article
Image: A diagram of the process by which a fluorescent-labeled stem cell line was generated for production of cardiac cells (Photo courtesy of Pennsylvania State University).
Image: A diagram of the process by which a fluorescent-labeled stem cell line was generated for production of cardiac cells (Photo courtesy of Pennsylvania State University).
The CRISPR/Cas9 genome-editing tool was used as part of a process designed to produce fluorescent-labeled cardiomyocytes (CMs) from human pluripotent stem cells (hPSCs).

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. Since 2013, the CRISPR/Cas9 system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system from Streptococcus pyogenes is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

To bring human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) to the clinic, it is critical to evaluate the functionality of CMs. Current methods for determining functionality include using a force transducer, which analyzes the mechanics of a single muscle cell, and using calcium imaging. However, these methods cause undesirable impacts on the cells' functionality and are expensive and time-consuming.

Investigators at Pennsylvania State University (University Park, USA) reported in the November 30, 2018, online edition of the journal iScience that they had developed a process that was non-invasive and less likely to adversely affect the functionality of the CMs.

The investigators utilized the CRISPR/Cas9 gene editor to insert the ultrasensitive calcium indicator protein GCaMP6s into stem cells. The GCaMP6 protein enabled the stems cells to be induced to mature into CMs that could be directly characterized by fluorescence intensity. The intensity of the fluorescence correlated with mechanical strain detected by video microscope analysis.

The "knockin" cell line generated by CRISPR/Cas9 modification constitutively expressed GCaMP6s. This clone maintained pluripotency and cardiac differentiation potential, and these knockin hPSC-derived CMs exhibited sensitive fluorescence fluctuation with spontaneous contraction.

The knockin hPSC-derived CMs also showed sensitive response to isoprenaline treatment in a concentration-dependent manner. Thus, the GCaMP6s knockin hPSC line provided a non-invasive, sensitive, and economic approach to characterize the functionality of hPSC-derived CMs.

"CMs derived from hPSCs hold tremendous promise for cell-based therapies for heart diseases," said senior author Dr. Xiaojun Lance Lian, assistant professor of biomedical engineering at Pennsylvania State University. "Nevertheless, current methods for CM characterization cause undesirable impacts on the cells' functionality and are expensive and time-consuming. And because of the many benefits of the [CRISPR/Cas9] system, the process can further contribute to improved disease modeling and drug screening for treating cardiac diseases."

Related Links:
Pennsylvania State University

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA
New
Auto-Chemistry Analyzer
CS-1200

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.