We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Genetic Locus Linked to Diabetic Peripheral Neuropathy in Type II Diabetes

By LabMedica International staff writers
Posted on 24 Jun 2019
Print article
Image: An illustration depicting areas affected by diabetic peripheral neuropathy (DNP) (Photo courtesy of Wikimedia Commons).
Image: An illustration depicting areas affected by diabetic peripheral neuropathy (DNP) (Photo courtesy of Wikimedia Commons).
Results of a genome-wide association study (GWAS) have identified a genetic locus linked to the development of diabetic peripheral neuropathy (DPN) by individuals suffering from type II diabetes.

DPN, which is a serious complication of diabetes, causes pain or numbness in the legs and an increased risk of foot ulcers. While genetic factors have been postulated to be involved in the etiology of DPN, their identity remains mostly unknown.

To increase understanding of this genetic link, investigators at Harvard Medical School (Boston, MA, USA) conducted a systematic search for genetic variants influencing DPN risk using two well-characterized cohorts. Thus, a GWAS testing 6.8 million SNPs (single nucleotide polymorphisms) was carried out among participants of the ACCORD (Action to Control Cardiovascular Risk in Diabetes) clinical trial. Included were 4,384 cases with type II diabetes (TIID) and prevalent or incident DPN and 784 controls with TIID and no evidence of DPN at baseline or during follow-up. Replication of significant loci was sought among subjects with TIID (791 DPN-positive cases and 158 DPN-negative controls) from the BARI 2D (Bypass Angioplasty Revascularization Investigation 2 Diabetes) trial.

Results revealed a region on chromosome 2q24 showing a strong influence on the risk of developing DPN in type II diabetes. While the precise mechanisms remain to be elucidated, there were indications that genetic variants in this region may affect a sodium channel, which regulates the transmission of sensory signals in peripheral nerves.

"People carrying the less frequent variant at that location were protected from neuropathy and people carrying the more common variant at that same location were predisposed to this complication," said senior author Dr. Allesandro Doria, professor of medicine at Harvard Medical School. "We found that people with the protective allele have higher amounts of this sodium channel. This suggests that the sodium channel in the peripheral nerves might be used to protect people from neuropathy, by developing a drug that activates this channel."

Results of the DPN GWAS were published in the May 24, 2019, online edition of the journal Diabetes.

Related Links:
Harvard Medical School

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Gold Member
Chagas Disease Test
CHAGAS Cassette
New
Crypto + Giardia One Step Combo Card Test
CerTest Crypto + Giardia
New
HSV-1 Test
Herpes Simplex Virus 1 Test

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.