We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Ultrasensitive Biopsy Technique Monitors Risk of Cancer Recurrence

By LabMedica International staff writers
Posted on 19 Aug 2019
Print article
Image: Circulating tumor DNA (ctDNA) is found in serum and plasma fractions from blood. The mechanism of ctDNA release is unknown, though apoptosis, necrosis, and active secretion from tumor cells have been hypothesized (Photo courtesy of Wikimedia Commons).
Image: Circulating tumor DNA (ctDNA) is found in serum and plasma fractions from blood. The mechanism of ctDNA release is unknown, though apoptosis, necrosis, and active secretion from tumor cells have been hypothesized (Photo courtesy of Wikimedia Commons).
An ultrasensitive liquid biopsy technique, which may be personalized for each breast cancer patient, can be used to monitor the patient over time and allow early detection of tumor recurrence.

Analysis of tumor DNA shed into a patient’s circulation can provide a noninvasive means for detecting the presence of a tumor and analyzing its DNA for targetable mutations. However, it is difficult to detect small amounts of tumor DNA in the blood, especially in patients who have already undergone initial chemotherapy treatment.

To improve the sensitivity of the liquid biopsy approach to detect minute quantities of residual tumor DNA in plasma, investigators at The Translational Genomics Research Institute (Phoenix, AZ, USA) and collaborators in the United States and the United Kingdom developed a method called “targeted digital sequencing” (TARDIS) for multiplexed analysis of patient-specific cancer mutations.

According to the investigators, TARDIS combines the strengths of PCR-based methods (minimizing losses of template DNA molecules) and ligation-based methods (incorporation of unique molecular identifiers (UMIs), preservation of fragment sizes, and hundred-fold multiplexing). This combination achieves a balance between depth and breadth of tumor genome analyzed, investigating dozens to hundreds of patient-specific mutations with deep coverage. The TARDIS method was streamlined and automated to successfully target 55% of putative founder mutations per patient on average. The technique relies on routine primer synthesis with standard purification and requires a limited sequencing footprint, making this approach cost-effective and enabling frequent and longitudinal analysis of plasma samples.

The TARDIS assay analyzes an amount of DNA equivalent to a single tube of blood and can simultaneously address eight to 16 known mutations. In the current study, TARDIS achieved up to 100-fold improvement beyond the current limit of ctDNA detection using clinically relevant blood volumes, TARDIS successfully detected ctDNA in plasma samples from 33 patients with breast cancer before they began treatment, and revealed that the patients had lower concentrations of ctDNA after treatment was completed. Furthermore, patients who responded the best to chemotherapy displayed a 96% decrease in ctDNA abundance, while patients with residual disease showed a 77% decrease - indicating the platform could guide the personalized management of patients at risk of cancer recurrence.

"By precisely measuring ctDNA, this test can detect the presence of residual cancer, and inform physicians if cancer has been successfully eradicated by treatment," said senior author Dr. Muhammed Murtaza, co-director for noninvasive diagnostics at The Translational Genomics Research Institute. "The results of these tests could be used to individualize cancer therapy avoiding overtreatment in some cases and under treatment in others. The central premise of our research is whether we can develop a blood test that can tell patients who have been completely cured apart from patients who have residual disease. We wondered whether we can see clearance of ctDNA from blood in patients who respond well to pre-surgical treatment."

The TARDIS method was described in the August 7, 2019, online edition of the journal Science Translational Medicine.

Related Links:
Translational Genomics Research Institute

Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
New
C. difficile Positive Control
C. difficile Ag Positive Control for Rapid Test
New
Adenovirus Test
S3334E ADV Adenovirus Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The study explored how emerging plasma biomarkers are related to the diagnostic tests currently used in clinical routines (Photo courtesy of Shutterstock)

Study Offers New Insights into Alzheimer's Disease Biomarkers

As of November 14, 2024, the European Medicines Agency (EMA) has recommended, for the first time, a drug aimed at slowing the progression of Alzheimer's disease (AD). This marks a significant milestone... Read more

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more

Pathology

view channel
Image: These images show the high resolution achieved with the new microscopy technique (Photo courtesy of Cao, R. et al. Science Advance, 2024. Caltech)

New Microscopy Technique Enables Rapid Tumor Analysis by Surgeons in OR

The current standard method for quickly sampling and imaging tissue during surgery involves taking a biopsy, freezing the sample, staining it to enhance visibility, and slicing it into thin sections that... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.