We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Noninvasive Device Computes Blood Glucose Levels

By LabMedica International staff writers
Posted on 13 Sep 2010
Print article
Raman spectroscopy has been used to measure the amount of glucose in the tissue under the skin without the need to perform phlebotomy.

Raman spectroscopy is a technique used to study vibrational, rotational, and other low-frequency modes in a system. It relies on inelastic scattering of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range.

Patients undergoing the oral glucose tolerance test (OGTT) need to have their blood drawn at frequent intervals so that after ingestion of a glucose-rich solution, the level of glucose in the blood can be estimated. This test will determine how quickly glucose is cleared from the blood, an indicator of diabetes, insulin resistance, or reactive hypoglycemia. In a study of 10 healthy volunteers undergoing OGTT, at the Massachusetts Institute of Technology's (MIT) Spectroscopy Laboratory (Cambridge, MA, USA), blood concentrations of glucose were measured every 10 minutes using a clinical glucose analyzer (HemoCue, Inc., Lake Forest, CA, USA).

Raman spectra were collected every five minutes from the forearms of healthy Caucasian and Asian human volunteers undergoing the OGTT. For the excitation source, an 830 nm diode laser was used at an average power of 300 mW on a 1 mm2 skin spot. An f/1.8 spectrograph was coupled to a liquid nitrogen-cooled charge-coupled device for spectral dispersion and acquisition, respectively. A dynamic concentration correction (DCC) calibration method was applied to the Raman spectra results for correlation with the blood glucose results.

The Raman technique actually measures the glucose concentration in the interstitial fluid and not the blood. However, this calibration becomes more difficult immediately after the patient drinks the glucose solution because blood glucose soars rapidly, while it takes 5-10 minutes to see a corresponding surge in the interstitial fluid glucose levels. Therefore, interstitial fluid measurements do not give an accurate picture of what is happening in the bloodstream. To compare the two sets of results, the scientists used an algorithm that relates the two concentrations, allowing them to predict blood glucose levels from the glucose concentration in interstitial fluid. After the algorithm was applied, the results from the two sets of data were very similar.

The scientists reported that using DCC-calibrated Raman spectroscopy significantly boost the accuracy of blood glucose measurements with an average improvement of 15%, and up to 30% in some subjects. The study was published in the June 2010 issue of Analytical Chemistry.

Related Links:
Massachusetts Institute of Technology
HemoCue, Inc.


New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TETANUS Test
TETANUS VIRCLIA IgG MONOTEST
New
Uric Acid and Blood Glucose Meter
URIT-10

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.