We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Approach Predicts Outcomes in Heart Failure Patients

By LabMedica International staff writers
Posted on 07 Jan 2014
Print article
Image: A nuclear magnetic resonance tube with a protein sample (Photo courtesy of Kjaergaard).
Image: A nuclear magnetic resonance tube with a protein sample (Photo courtesy of Kjaergaard).
A new method has been identified that determines whether a patient's heart will fail, which in the future may help physicians better treat patients and tailor therapeutic interventions.

This novel method tests energy metabolism in the heart and has proved to be a significant predictor of clinical outcomes, independent of a patient's symptoms, race, or strength of the heart and helps determine which patients with heart failure (HF) will do well and which patients will not.

Scientists at the Johns Hopkins University School of Medicine (Baltimore, MD, USA) measured energy metabolism in 58 heart failure patients with nonischemic cardiomyopathy, or heart failure not due to blocked arteries and 17 healthy subjects using magnetic resonance spectroscopy (MRS). They then followed these patients for a median of 4.7 years, recording any hospitalizations, heart transplantation, placement of a ventricular assist device and death from all causes.

The investigators looked at adenosine triphosphate (ATP), an energy source for heart muscle cells, and an energy reserve called creatine kinase (CK), an enzyme that interacts with ATP to keep the energy supply constant in a beating heart. They measured the rate of ATP synthesis through CK, called CK flux, using MRS (GE Healthcare Technologies, Pittsburgh, PA, USA). They found that measurements of CK flux were significantly lower in heart failure patients whose condition had worsened.

Gurusher Panjrath, MD, an assistant professor of medicine and co-lead author of the study said, “While various used methods are currently used for prediction, none of these methods are reflective of the underlying mechanism in the weak heart. Furthermore, some of these measures are not very consistent in their predictive ability. There is a need for newer methods, which could potentially be more specific and reproducible. By targeting impaired energy metabolism, it may also be possible in the future to develop and tailor therapies to this new target.” The study was published on December 11, 2013, in the journal Science Translational Medicine.

Related Links:

Johns Hopkins University School of Medicine
GE Healthcare Technologies 


Gold Member
Troponin T QC
Troponin T Quality Control
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
DVT/PE Test
VIDAS D-DIMER EXCLUSION II
New
Ross River Virus Test
Ross River Virus Real Time PCR Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.