We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Protein Analysis Tool Improves Diagnostic Accuracy

By LabMedica International staff writers
Posted on 23 May 2018
Print article
Image: Compared to OpenMS and industry standard MaxQuant, IonStar lowered the amount of missing data in test results from 17% to 0.1%. White area indicates missing data (Photo courtesy of Professor Jun Qu, PhD).
Image: Compared to OpenMS and industry standard MaxQuant, IonStar lowered the amount of missing data in test results from 17% to 0.1%. White area indicates missing data (Photo courtesy of Professor Jun Qu, PhD).
The abundance of proteins in the body that correspond with disease or pharmaceutical reactions can provide physicians with vital clues for accurately diagnosing a condition, and for developing potential therapies and evaluating drug effects.

Protein analysis tools are used to quantify and compare the abundance of proteins in groups of healthy individuals with those who are ill or treated with a drug. Changes in protein abundances, when analyzed together, often reveal novel biomarkers.

Scientists at the University at Buffalo (Buffalo, NY, USA) and their colleagues developed a new protein analysis tool that could vastly increase the speed and precision with which disease and drug effects are analyzed. The groundbreaking tool, called IonStar, is the first to provide near-perfect accuracy when quantifying and comparing the abundance of proteins in the bodies of people who are healthy and ill.

The team used IonStar to quantify proteins in rats with traumatic brain injury, a debilitating condition that accounts for 2.2 million emergency room visits annually in the USA. Using 100 tissue samples, IonStar identified 7,000 proteins, including 1,000 that differed in abundance, without missing data. The team has used IonStar and similar techniques to analyze protein variation in cancer, diabetes, cardiovascular disease, neurodegeneration and retina degeneration as well. IonStar increases accuracy and precision and lowers missing data by improving on sample preparation methods, alignment and feature detection designs for mass spectrometry analysis.

Several other unique features of IonStar are also included for removal of shared peptides, detection and rejection of outliers, and experimental estimate and control of false altered protein discovery rate (FADR). This well-optimized protocol enables global quantification of more than 5,000 proteins in ~50 replicated with high quantitative accuracy and precision, plus extremely low level of missing data. Additionally, extensive proteome coverage as well as much improved quantification of low-abundance proteins could be achieved.

Jun Qu, PhD, a professor in the UB School of Pharmacy and Pharmaceutical Sciences and lead investigator, said, “IonStar will totally change the face of clinical and pharmaceutical studies and industry, where large investigations are often critical. For example, in clinical trials, comparing a handful of patients gets you nowhere. If you can analyze a large number of patients with high-quality data, you can discover and track biomarkers much more accurately and reliably. The same is true for pharmaceutical investigations.” The study was published on May 9, 2018, in the journal Proceedings of the National Academy of Sciences.

Related Links:
University at Buffalo

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Thyroxine ELISA
T4 ELISA
New
Newborn Screening Test
NeoMass AAAC 3.0

Print article

Channels

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.