We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Protein Analysis Tool Improves Diagnostic Accuracy

By LabMedica International staff writers
Posted on 23 May 2018
Print article
Image: Compared to OpenMS and industry standard MaxQuant, IonStar lowered the amount of missing data in test results from 17% to 0.1%. White area indicates missing data (Photo courtesy of Professor Jun Qu, PhD).
Image: Compared to OpenMS and industry standard MaxQuant, IonStar lowered the amount of missing data in test results from 17% to 0.1%. White area indicates missing data (Photo courtesy of Professor Jun Qu, PhD).
The abundance of proteins in the body that correspond with disease or pharmaceutical reactions can provide physicians with vital clues for accurately diagnosing a condition, and for developing potential therapies and evaluating drug effects.

Protein analysis tools are used to quantify and compare the abundance of proteins in groups of healthy individuals with those who are ill or treated with a drug. Changes in protein abundances, when analyzed together, often reveal novel biomarkers.

Scientists at the University at Buffalo (Buffalo, NY, USA) and their colleagues developed a new protein analysis tool that could vastly increase the speed and precision with which disease and drug effects are analyzed. The groundbreaking tool, called IonStar, is the first to provide near-perfect accuracy when quantifying and comparing the abundance of proteins in the bodies of people who are healthy and ill.

The team used IonStar to quantify proteins in rats with traumatic brain injury, a debilitating condition that accounts for 2.2 million emergency room visits annually in the USA. Using 100 tissue samples, IonStar identified 7,000 proteins, including 1,000 that differed in abundance, without missing data. The team has used IonStar and similar techniques to analyze protein variation in cancer, diabetes, cardiovascular disease, neurodegeneration and retina degeneration as well. IonStar increases accuracy and precision and lowers missing data by improving on sample preparation methods, alignment and feature detection designs for mass spectrometry analysis.

Several other unique features of IonStar are also included for removal of shared peptides, detection and rejection of outliers, and experimental estimate and control of false altered protein discovery rate (FADR). This well-optimized protocol enables global quantification of more than 5,000 proteins in ~50 replicated with high quantitative accuracy and precision, plus extremely low level of missing data. Additionally, extensive proteome coverage as well as much improved quantification of low-abundance proteins could be achieved.

Jun Qu, PhD, a professor in the UB School of Pharmacy and Pharmaceutical Sciences and lead investigator, said, “IonStar will totally change the face of clinical and pharmaceutical studies and industry, where large investigations are often critical. For example, in clinical trials, comparing a handful of patients gets you nowhere. If you can analyze a large number of patients with high-quality data, you can discover and track biomarkers much more accurately and reliably. The same is true for pharmaceutical investigations.” The study was published on May 9, 2018, in the journal Proceedings of the National Academy of Sciences.

Related Links:
University at Buffalo

Gold Member
Troponin T QC
Troponin T Quality Control
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Urine Analyzer
URIT-180
New
Crypto + Giardia One Step Combo Card Test
CerTest Crypto + Giardia

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.