We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Graphene-Based Biosensors Could Detect Sepsis Earlier in Critically Ill Patients

By LabMedica International staff writers
Posted on 09 Jun 2023
Print article
Image: Gii-Sens is the world`s first 3D Graphene foam electrode for biosensing (Photo courtesy of Integrated Graphene)
Image: Gii-Sens is the world`s first 3D Graphene foam electrode for biosensing (Photo courtesy of Integrated Graphene)

Lactate serves as a vital biomarker in managing hospitalized patients who are critically ill. A common complication in intensive care units, hyperlactatemia, can occur either due to insufficient oxygen supply to tissues or underlying conditions such as advanced liver disease. If left untreated, hyperlactatemia can escalate into lactate acidosis, a severe condition that can be life-threatening. Reliable real-time lactate detection, whether via single-point or continuous monitoring, has the potential to enhance patient outcomes in critical care and speed up the diagnosis of sepsis in critically ill individuals. Now, a new study has highlighted the significant potential of graphene-based biosensors for detecting elevated lactate levels.

The study by researchers at the University of Bath (Bath, UK) showed that using Integrated Graphene’s (Stirling, UK) Gii-Sens electrochemical sensor can enhance the diagnostic accuracy of hyperlactatemia. The Gii-Sens, a diagnostic biosensing electrode, outperforms conventional sensing materials by a factor of 10-100, enabling rapid, laboratory-quality testing at the point of need in a cost-effective manner. Gii-Sens electrochemical electrodes, produced using Integrated Graphene’s novel 3D graphene Gii, are disposable sensors designed for one-step assays without the need for pre-treatments.

“Lactate is a naturally occurring biomarker which everyone produces as a byproduct of exercising. For most people it is easily processed by the body and will cause no major harm, apart from a little cramp if you overexert yourself,” said Dr. Marco Caffio, Integrated Graphene’s Co-Founder and CSO. “However, for some critically ill patients and those with underlying conditions it can be a sign of a range of other issues, some of which, like sepsis, can be fatal. Having a robust way of monitoring lactate levels is important in ensuring the best possible outcomes for these patients. The findings of this study demonstrate Gii’s reliable performance and potential to save lives.”

Related Links:
University of Bath 
Integrated Graphene 

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Gold Member
Veterinary Hematology Analyzer
Exigo H400
New
Immunofluorescence Analyzer
MPQuanti
New
Auto Clinical Chemistry Analyzer
cobas c 703

Print article

Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Pathology

view channel
Image: Microscopic images showing healthy villi on the left and diseased villi on the right (Photo courtesy of Florian Jaeckle/University of Cambridge)

Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy

Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.