We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples

By LabMedica International staff writers
Posted on 27 Mar 2025
Print article
Image: The study examined the influence of pre-analytical conditions on cell-free microRNA stability in blood plasma samples (Photo courtesy of 123RF)
Image: The study examined the influence of pre-analytical conditions on cell-free microRNA stability in blood plasma samples (Photo courtesy of 123RF)

Scientists worldwide are working to enhance the quality of diagnostics and prognosis for various diseases, including cancer, by analyzing different body fluids such as blood, urine, and saliva. MicroRNAs, which range from 18 to 25 nucleotides in length, are well-established post-transcriptional regulators of gene expression and play a crucial role in intracellular communication. These molecules, present in human biological fluids, are released from both normal and tumor cells, with about 3,000 individual microRNAs identified. These microRNAs circulate within biological fluids, often bound to biopolymers or packed into microvesicles, which makes them relatively stable. As a result, they are considered an ideal source of diagnostic material for liquid biopsies to detect tumors or other pathological conditions. For microRNAs to be utilized effectively as biomarkers, systematic and universally accepted guidelines for biosample processing must be developed, particularly concerning the stability of microRNAs during storage. Now, new research has shown that pre-analytical factors, such as the storage conditions of blood plasma or extracellular vesicles, significantly impact microRNA stability, thereby influencing the detected concentrations of specific microRNAs.

In a study conducted by researchers at the Novosibirsk Institute of Chemical Biology and Fundamental Medicine (ICBFM, Novosibirsk, Russia), the team investigated how different plasma storage conditions affected the stability of endogenous microRNAs in human blood plasma. The study focused on four endogenous microRNAs (miR-16, miR-19b, miR-23a, miR-451a) and the exogenous microRNA cel-miR-39, evaluating their stability under short- and long-term incubation at various temperatures. Additionally, the team examined how long-term storage affected the stability of microRNAs within extracellular vesicles (EVs). They also compared microRNA yields from fresh and archived plasma samples and assessed the impact of variations in miRNA extraction protocols and the use of RNA stabilizing agents on the efficiency of isolation.

The researchers employed a single-phase miRNA isolation method, which they had successfully used in previous studies to identify miRNA biomarkers for lung cancer in blood. Published in the ExRNA journal, the study confirmed that the degradation rate of microRNAs is influenced by their structure and packaging. They also found that adding various stabilization solutions to biofluids can impact the efficiency of miRNA extraction. The long-term findings from this study emphasize the importance of analyzing cell-free nucleic acids, including microRNAs, within 2 to 4 weeks after biological samples are collected to ensure the accuracy and reliability of diagnostic results.

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Gold Member
Troponin T QC
Troponin T Quality Control
New
Piezoelectric Micropump
Disc Pump
New
Urine Collection Container
Drug Testing Containers with Temperature Strip

Print article

Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.