We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Renal Expression of Immunomodulators in Diabetic Nephropathy

By LabMedica International staff writers
Posted on 12 Aug 2020
Print article
In situ expression of chemokines eotaxin, IL-8, and MIP-1α in glomerular and tubulointerstitial compartments in patients with diabetic nephropathy (DN) and control group (Photo courtesy of Federal University of Triângulo Mineiro).
In situ expression of chemokines eotaxin, IL-8, and MIP-1α in glomerular and tubulointerstitial compartments in patients with diabetic nephropathy (DN) and control group (Photo courtesy of Federal University of Triângulo Mineiro).
Diabetic nephropathy (DN) is a chronic microvascular complication that affects about 20% to 30% of patients with type 2 diabetes mellitus (T2DM). It is considered the leading cause of end-stage renal failure requiring renal replacement therapy.

Immune and inflammatory mechanisms play important role in the development and progression of DN, which is considered a chronic inflammatory disease. Several cells, such as monocytes, macrophages, and lymphocytes, as well as the immunomodulators chemokines and cytokines, have been implicated in this process.

Medical scientists at the Federal University of Triângulo Mineiro (Uberaba, Brazil) selected 44 native renal biopsies from patients with DN and 23 control cases. The diagnosis of DN was performed with three samples used for light microscopy (LM), direct immunofluorescence (IF) and transmission electron microscopy (TEM). For LM, 2-μm paraffin sections were stained with hematoxylin and eosin (H&E), Sirius red, methenamine silver, and Masson’s trichrome. LM was used to analyze morphological changes and interstitial inflammation.

Immunohistochemistry was performed manually on slides containing paraffin-embedded tissue sections using the Novolink Polymer Detection System Kit, a non-biotin polymer system (Leica Biosystems, Nussloch, Germany; www.leicabiosystems.com). In situ expression of eotaxin, macrophage inflammatory protein-1α (MIP-1α), interleukin-8 (IL-8), IL-4, IL-10, tumor necrosis factor-α (TNF-α ), tumor necrosis factor receptor-1 (TNFR1), IL-1β, and IL-6 were evaluated by immunohistochemistry. Immunostained cells showing an intense brownish staining were marked by the observer using the interactive AxionCam ICc 5 image analysis system (Carl Zeiss Microscopy GmbH, Jena, Germany; www.zeiss.de).

The team reported that the DN group showed a significant increase in IL-6, IL-1β, IL-4 and eotaxin expression, and a decrease in TNFR1 and IL-8 expression compared to the control group. However, there were no significant differences in IL-10, TNF-α, and MIP-1α expression among groups. With interstitial inflammation, there was a significant increase in IL-6 in scores 0 and 1 compared to score 2 , in IL-10 in score 2 compared to score 0, and in eotaxin in score 2 compared to scores 0 and 1, whereas IL-8 and MIP-1α showed no significant differences. There was a tendency for negative correlation between eotaxin and estimated glomerular filtration rate (eGFR).

The authors concluded that that in situ expression of cytokines and chemokines, including IL-6, IL-1β, IL-4 and eotaxin, is increased in patients with DN. It was observed that, possibly, eotaxin may have an important role in progression of interstitial inflammation in DN and in the decrease of eGFR of these patients. The study was published on July 28, 2020 in the journal BMC Nephrology.


Related Links:

Federal University of Triângulo Mineiro
Leica Biosystems
Carl Zeiss Microscopy
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
New
Dehydroepiandrosterone Assay
DHEA ELISA
New
Blood Gas Panel plus Electrolytes
i-STAT EG6+ Cartridge

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.