We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

By LabMedica International staff writers
Posted on 19 Apr 2024
Print article
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample. However, tumors are heterogeneous, containing multiple subpopulations of cells, or clones, each potentially responding differently to treatments. This variability may explain why some patients either fail to respond to certain treatments or develop resistance. Single-cell RNA sequencing offers higher-resolution data than bulk sequencing, capturing data at the single-cell level. This approach to identify and target individual clones may lead to more lasting drug responses, although, single-cell gene expression data are more expensive to generate and less accessible in clinical environments.

In a proof-of-concept study, researchers at the National Institutes of Health (NIH, Bethesda, MD, US) have developed an artificial intelligence (AI) tool that leverages data from individual tumor cells to predict how well a person's cancer might respond to a specific drug. This study demonstrates the potential of single-cell RNA sequencing in helping oncologists match effective therapies to their patients. In the new study, the team employed a machine learning technique known as transfer learning to train an AI model using common bulk RNA sequencing data, after which they used single-cell RNA sequencing data to fine-tune the model. This method was applied to existing cell-line data from comprehensive drug response trials, resulting in AI models for 44 FDA-approved cancer drugs that could predict cellular reactions to both individual and drug combinations.

Further testing involved data from 41 multiple myeloma patients treated with four drugs and 33 breast cancer patients treated with two drugs. The findings revealed that resistance in any single-cell clone could render the treatment ineffective, even if other clones were responsive. The model also successfully predicted resistance development in data from 24 patients with non-small cell lung cancer undergoing targeted therapies. The researchers noted that the accuracy of this approach can improve as single-cell RNA sequencing becomes more widely available. To facilitate broader use, the researchers have created a research website and a guide, dubbed Personalized Single-Cell Expression-based Planning for Treatments In Oncology (PERCEPTION), for applying the AI model to new datasets.

Related Links:
NIH

New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test
New
RNA/DNA Extraction Instrument
QIAcube Connect Instrument

Print article

Channels

Molecular Diagnostics

view channel
Image: This joint effort will use samples from KU ADRC research to validate a blood test developed by BYU (Photo courtesy of KU ADRC)

Blood Test for Early Alzheimer’s Detection Could Help Slow Disease Progression

When brain cells, such as those affected by Alzheimer’s disease, die, small fragments of DNA are released into the bloodstream. These fragments, known as cell-free DNA, carry valuable information, including... Read more

Hematology

view channel
Image: Personalized blood count could lead to early intervention for common diseases (Photo courtesy of 123RF)

Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals

A complete blood count (CBC) screening is a standard examination most physicians request for healthy adults. This test is essential for evaluating a patient’s overall health with a single blood sample.... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more

Pathology

view channel
Image: These images show the high resolution achieved with the new microscopy technique (Photo courtesy of Cao, R. et al. Science Advance, 2024. Caltech)

New Microscopy Technique Enables Rapid Tumor Analysis by Surgeons in OR

The current standard method for quickly sampling and imaging tissue during surgery involves taking a biopsy, freezing the sample, staining it to enhance visibility, and slicing it into thin sections that... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.