We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Innovative Diagnostic Approach for Bacterial Infections to Enable Faster and Effective Treatment

By LabMedica International staff writers
Posted on 21 Oct 2024
Print article
Image: Researchers have developed a method to quickly identify the most appropriate treatments for bacterial infections (Photo courtesy of Shutterstock)
Image: Researchers have developed a method to quickly identify the most appropriate treatments for bacterial infections (Photo courtesy of Shutterstock)

For patients with bacterial infections, timely treatment with the appropriate antibiotics significantly improves their chances of recovery. Current methods for identifying which antibiotics will be effective for each patient involve culturing bacteria from the patient in a laboratory, a process that takes several days to provide results. During this time, patients are often prescribed broad-spectrum antibiotics, which can create drug-resistant infections—a major public health concern. Now, an innovative diagnostic approach could potentially enable patients with bacterial infections to receive the most effective treatment more quickly, thereby reducing the reliance on broad-spectrum antibacterials.

The method, named Genotypic and Phenotypic Antibiotic Susceptibility Testing through RNA detection, or GoPhAST-R, has been developed by researchers at the Broad Institute of MIT and Harvard, in collaboration with Massachusetts General Hospital (Cambridge, MA, USA). This technique analyzes both the growth and genetic activity of bacteria to quickly assess the pathogen's susceptibility to various antibiotics. In the GoPhAST-R approach, bacterial samples are exposed to a range of antibiotics, after which an RNA detection platform is used to identify distinct patterns of change in messenger RNA expression, which indicate differences in bacterial gene activity. These mRNA changes occur within minutes of antibiotic exposure in drug-susceptible bacteria, while they do not appear in drug-resistant strains. Additionally, the method investigates genes associated with antibiotic resistance, providing insights into the underlying bacterial mechanisms and suggesting potential therapeutic options. The researchers have also demonstrated the approach's effectiveness in a pilot study involving blood cultures from patients receiving inpatient treatment for infections.

In their previous work with a limited number of patient samples, the research team demonstrated that GoPhAST-R could ascertain antibiotic susceptibility in under four hours after bacteria were detected in a blood culture, compared to 28-40 hours using conventional clinical laboratory techniques. In the new study, they expanded the clinical pilot to encompass blood samples from 42 patients hospitalized with infections caused by Escherichia coli or Klebsiella pneumoniae, which are among the most common pathogens responsible for bloodstream infections. The researchers exposed the blood cultures to nine different antibiotics from three distinct classes and subsequently conducted transcriptional profiling on the NanoString platform. They analyzed mRNA changes in 10 genes for each antibiotic class, along with a select few genes that confer resistance to beta-lactam antibiotics. According to a paper published on the pre-print server medRxiv and findings reported in the Journal of Clinical Microbiology, their results demonstrated 95% agreement with those obtained from gold-standard growth-based assays for antibiotic susceptibility.

"In this pilot, we've shown that GoPhAST-R is an approach that can work well in the clinic," said study senior author Roby Bhattacharyya, an associate member at the Broad Institute of MIT and Harvard. "The next step will be to show GoPhAST-R's utility in making decisions about patient care in real time. We'd love to one day see it as an assay that can be employed in hospitals everywhere, to help patients get more effective treatments without promoting drug resistance."

Related Links:
Broad Institute of MIT and Harvard

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
New
Gold Member
ZIKA Virus Test
ZIKA ELISA IgG
New
Washer Disinfector
Tiva 8
New
Epstein-Barr Virus Test
ZEUS IFA Epstein-Barr Virus VCA IgG Test

Print article

Channels

Molecular Diagnostics

view channel
Image: The kit includes a container with a film, a compact optical device for attaching a smartphone, and a diagnostic app (Photo courtesy of KIST)

Urine-Based Bladder Cancer Diagnostic Kit to Reduce Need for Unnecessary Cystoscopies

Bladder cancer has a high cure rate of over 90% when detected early, but it is characterized by a recurrence rate of 70%, which requires continuous monitoring. Late-stage detection often results in major... Read more

Pathology

view channel
Image: The AI tool can search through data and histology images for much more precise information on cancer treatment effectiveness (Photo courtesy of Shutterstock)

AI Tool Analyzes 30K Data Points Per Medical Imaging Pixel in Cancer Search

A new artificial intelligence (AI)-powered tool can detect cell-level characteristics of cancer by analyzing data from very small tissue samples, some as tiny as 400 square micrometers, equivalent to the... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.