We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Likelihood of Lymphoma Recurrence Can Be Predicted by Monitoring Blood Levels of Circulating Tumor DNA

By LabMedica International staff writers
Posted on 14 Apr 2015
Print article
Image: Measurement of circulating tumor DNA (ctDNA) can be used to diagnose patients with diffuse large B-cell lymphoma (DLBCL) and to predict their likely response to treatment (Photo courtesy of National Cancer Institute).
Image: Measurement of circulating tumor DNA (ctDNA) can be used to diagnose patients with diffuse large B-cell lymphoma (DLBCL) and to predict their likely response to treatment (Photo courtesy of National Cancer Institute).
A recent paper described the measurement of circulating tumor DNA (ctDNA) to diagnose patients with diffuse large B-cell lymphoma (DLBCL) and to predict their likely response to treatment.

DLBCL is a treatable form of cancer, but when treatment fails, outcome is poor. Although imaging can help to identify patients at risk of treatment failure, they are often imprecise, and radiation exposure is a potential health risk. Investigators at the [US] National Cancer Institute (Bethesda, MD, USA) examined the possibility that ctDNA encoding the clonal immunoglobulin gene sequence could be detected in the serum of patients with DLBCL and used to predict clinical disease recurrence after chemotherapeutic treatment.

To this end the investigators obtained serial serum samples and concurrent CT scans at specified times during most treatment cycles and up to five years of follow-up from 126 patients who had no evidence of indolent lymphoma and were previously untreated. The patients were then assigned to one of three treatment protocols between May 1993, and June 2013.

Serum samples were tested retroactively using next-generation DNA sequencing techniques to analyze cell-free circulating tumor DNA. Results revealed that among the 107 patients who achieved complete remission following treatment, those who developed detectable ctDNA during surveillance were over 200 times more likely to have their disease progress than those who did not have detectable ctDNA. The investigators also found that measuring ctDNA enabled the detection of cancer recurrence a median of 3.4 months before clinical evidence of disease. Furthermore, following an approach known as interim monitoring, ctDNA analysis was able to predict which patients would not respond to therapy as early as their second cycle of treatment.

“Even with frequent CT imaging, administered for a median of 11 times per patient in our study, early disease detection was suboptimal. Indeed, a recent study suggested that surveillance CT scans might be no better than an up-to-date patient history and physical exams, supporting the need for more effective monitoring technologies,” said senior author Dr. Wyndham Wilson, senior investigator in the lymphoid malignancies branch of the National Cancer Institute. . “Interim ctDNA is therefore a promising biomarker to identify patients at high risk of not responding to treatment for their disease.”

Related Links:
[US] National Cancer Institute


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.