We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




An Omics Approach for Predicting Mutations in Protein-Metal Binding Sites

By LabMedica International staff writers
Posted on 06 Jan 2020
Print article
Image: Cartoon representation of the zinc-finger motif of proteins. The zinc ion (green) is coordinated by two histidine and two cysteine amino acid residues (Photo courtesy of Wikimedia Commons)
Image: Cartoon representation of the zinc-finger motif of proteins. The zinc ion (green) is coordinated by two histidine and two cysteine amino acid residues (Photo courtesy of Wikimedia Commons)
A deep learning approach was developed that was able to predict how mutations in the metal-binding sites of metalloproteins were related to various diseases.

Metalloproteins play important roles in many biological processes. Mutations at the metal-binding sites may functionally disrupt metalloproteins, initiating severe diseases; however, there has not been an effective approach for predicting such mutations.

In this regard, investigators at the University of Hong Kong (China) developed an “omics”-based deep learning approach to predict disease-associated mutations of the metal-binding sites in a protein. Omics (such fields as genomics, proteomics, etc.) aims at the collective characterization and quantification of pools of biological molecules that translate into the structure, function, and dynamics of an organism or organisms.

The investigators began by integrating omics data from different databases to build a comprehensive computer training dataset. Statistical analysis of the collected data revealed that various metals had different disease associations. A mutation in zinc-binding sites had a major role in breast, liver, kidney, immune system, and prostate diseases. By contrast, mutations in calcium- and magnesium-binding sites were associated with muscular and immune system diseases, respectively. Mutations in iron-binding sites were associated with metabolic diseases. In addition, mutations of manganese- and copper-binding sites were associated with cardiovascular diseases, and copper-binding site mutations were also associated with nervous system diseases.

The investigators generated energy-based affinity grid maps and physiochemical features of the metal-binding pockets (obtained from different databases as spatial and sequential features) and subsequently incorporated these features into a multichannel convolutional neural network. After training the model, the multichannel convolutional neural network successfully predicted disease-associated mutations that occurred at the first and second coordination spheres of zinc-binding sites with an area under the curve of 0.90 and an accuracy of 0.82.

Senior author Dr. Hongzhe Sun, professor of bioinorganic chemistry at the University of Honk Kong, said, "Machine learning and AI play important roles in the current biological and chemical science. In my group we worked on metals in biology and medicine using integrative omics approach including metallomics and metalloproteomics, and we already produced a large amount of valuable data using in vivo/vitro experiments. We now develop an artificial intelligence approach based on deep learning to turn these raw data to valuable knowledge, leading to uncover secrets behind the diseases and to fight with them. I believe this novel deep learning approach can be used in other projects, which is undergoing in our laboratory."

The mettaloprotein binding site mutations paper was published in the December 9, 2019, online edition of the journal Nature Machine Intelligence.

Related Links:
University of Hong Kong

New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Automated Blood Typing System
IH-500 NEXT
New
ELISA System
ABSOL HS DUO
New
Hepato Fibrosis Assays
Hepato Fibrosis Assays

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.