We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Advanced Urinary Analysis Method Expected to Significantly Reduce Number of Prostate Cancer Biopsies

By LabMedica International staff writers
Posted on 18 Mar 2020
Print article
Image: Micrograph showing a prostate cancer (conventional adenocarcinoma) with perineural invasion (Photo courtesy of Wikimedia Commons)
Image: Micrograph showing a prostate cancer (conventional adenocarcinoma) with perineural invasion (Photo courtesy of Wikimedia Commons)
A team of British researchers has developed an advanced, RNA and DNA biomarker-based urine test for diagnosis of prostate cancer, which is expected to significantly reduce the number of unnecessary biopsies performed every year.

Prostate cancer exhibits extreme clinical heterogeneity; 10‐year survival rates following diagnosis approach 84%, yet prostate cancer is still responsible for 13% of all cancer deaths in men in the United Kingdom. Current practice assesses a patient's disease using a PSA (prostate specific antigen) blood test, prostate biopsy, and MRI. However, up to 60% of men with a raised PSA level are negative for prostate cancer on biopsy.

Coupled with the high rates of diagnosis, prostate cancer is more often a disease that men die with rather than from. This illustrates the urgent need for clinical tools able to selectively identify those men with cancers that only require monitoring from those men harboring a disease that requires intervention.

Toward this end, investigators at the University of East Anglia (Norwich, United Kingdom) sought to develop a multivariable risk prediction model through the integration of clinical, urine‐derived cell‐free messenger RNA (cf‐RNA) and urine cell DNA methylation data capable of noninvasively detecting significant prostate cancer in patients in lieu of biopsy.

The investigators analyzed urine samples collected from 207 patients with clinical suspicion of prostate cancer (PSA greater than four nanograms per milliliter, adverse digital rectal examination, age, or lower urinary tract symptoms).

Machine learning techniques were used to integrate the biological markers into a prediction formula called ExoMeth. Results revealed that as the ExoMeth risk score increased, the likelihood of high‐grade disease being detected on biopsy was significantly greater.

Senior author Dr. Daniel Brewer, senior lecturer in cancer studies at the University of East Anglia, said, "It is still very early days for this research, but if ExoMeth were validated in a future study with many more patients, we could see an approximate 60% reduction in unnecessary biopsies in around five years."

The study was published in the March 9, 2020, online edition of the journal The Prostate.

Related Links:
University of East Anglia

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb

Print article

Channels

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: BIOTIA-ID is an NGS platform that accurately and sensitively diagnoses infectious disease-causing pathogens (Photo courtesy of Adobe Stock)

New Collaboration to Advance Microbial Identification for Infectious Disease Diagnostics

With the rise of global pandemics, antimicrobial resistance, and emerging pathogens, healthcare systems worldwide are increasingly dependent on advanced diagnostic tools to guide clinical decisions.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.