We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Genetic Risk of Inflammatory Bowel Disease Appears Distinct in African Americans

By LabMedica International staff writers
Posted on 03 Mar 2021
Print article
Image: The M220 Focused-ultrasonicator is used for DNA Shearing for Next-Generation Sequencing (Photo courtesy of Covaris).
Image: The M220 Focused-ultrasonicator is used for DNA Shearing for Next-Generation Sequencing (Photo courtesy of Covaris).
The inflammatory bowel diseases Crohn’s disease (CD) and ulcerative colitis (UC) arise in the context of inappropriate activation of the intestinal immune system in response to an environmental trigger in individuals who are genetically predisposed.

Genetic discoveries of inflammatory bowel disease have been made primarily in populations of European ancestry and utilizing genome-wide genotype data. This predominance, combined with a focus on common alleles, has left the understanding of the role of rare variants among non-European populations incomplete.

A large team of multi-center multidisciplinary scientists led by the Emory University School of Medicine (Atlanta, GA, USA) sequenced the genomes of nearly 1,800 African Americans with inflammatory bowel diseases (IBD) and more than 1,600 unaffected controls with African ancestry from the USA. All DNA samples investigated in the study (a total of 3,610 before quality control [QC]) were processed and sequenced.

Genomic DNA extracted from the blood of sampled participants was fragmented to a target size of 385 bp fragments via a Covaris Focused-ultrasonicator (Woburn, MA, USA). Completed libraries were quantified with quantitative PCR kit (KAPA Biosystems, Wilmington, MA, USA), normalized to 2.2 nM, and were pooled into 24-plexes. Sample pools were combined with HiSeqX Cluster Amp Reagents EPX1, EPX2, and EPX3, and cluster generation was performed with the Illumina cBot and DNA libraries were sequenced with the HiSeqX sequencing system (Illumina, San Diego, CA, USA).

While the team's search did not unearth new loci with genome-wide significant ties to IBD, the genome sequence data and subsequent fine-mapping analyses suggested that several risk alleles occurred at different frequencies or had different effect sizes in the African American participants compared to individuals of European descent. For example, the major effect at PTGER4 fine maps to a single credible interval of 22 single-nucleotide polymorphisms (SNPs) corresponding to one of four independent associations at the locus in European ancestry individuals, but with an elevated odds ratio for Crohn’s disease in African Americans.

A rare variant aggregate analysis implicates Ca2+-binding neuro-immunomodulator CALB2 in ulcerative colitis. Highly significant overall overlap of common variant risk for inflammatory bowel disease susceptibility between individuals with African and European ancestries was observed, with 41 of 241 previously known lead variants replicated and overall correlations in effect sizes of 0.68 for combined inflammatory bowel disease.

Subra Kugathasan, MD, a professor of pediatrics and human genetics and a senior author of the study, said, “Subtle differences influence the performance of polygenic risk scores, and we show that ancestry-appropriate weights significantly improve polygenic prediction in the highest percentiles of risk.”

The authors concluded that their analyses provide an example of how polygenic analysis needs to be adjusted for ancestry when considering ethnic disparities in healthcare. Frequency distributions of polygenic risk scores can differ markedly across populations, mostly because of deviations in allele frequencies, although ascertainment biases in discovering common variant associations are also a concern. The study was published on February 17, 2021 in the journal American Journal of Human Genetics.

Related Links:
Emory University School of Medicine
Covaris
KAPA Biosystems
Illumina


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
New
RFID Tag
AD-302 M730
New
Rheumatoid Arthritis Test
Finecare RF Rapid Quantitative Test

Print article

Channels

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.