We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Novel Biomarkers Predict Response of Melanoma Patients to Immunotherapy

By LabMedica International staff writers
Posted on 28 Feb 2022
Print article
Image: Schematic of melanoma (skin cancer) (Photo courtesy of 123rf.com)
Image: Schematic of melanoma (skin cancer) (Photo courtesy of 123rf.com)

A recent paper described a way to use blood bioenergetics and metabolomics as predictive biomarkers to determine melanoma patients’ response to immune checkpoint inhibitor therapy.

As only a subset of melanoma patients respond to immunotherapy with checkpoint inhibitors (ICI), predictive biomarkers are critically needed to guide treatment decisions and develop approaches to the treatment of therapeutic resistance.

To search for such biomarkers, investigators at Wake Forest School of Medicine (Winston-Salem, NC, USA) compared bioenergetics of circulating immune cells and metabolomic profiles of plasma obtained from patients with melanoma before and after treatment with anti–PD-1 therapy. They also performed single-cell RNA sequencing (scRNAseq) to correlate transcriptional changes associated with metabolic differences observed in peripheral blood mononuclear cells (PBMC) and patient plasma. In addition, they analyzed blood samples of two patient groups before treatment, both with stage III and IV melanoma. One group of patients responded to ICI treatment and had a complete or partial response, while the other group did not respond to ICI treatment and had disease progression.

Result revealed that circulating immune cells of patients who responded to ICI treatment had an increased extracellular acidification rate, a measure of glucose metabolism. Also, there were changes evident in mitochondrial shape and structure that were linked to the response to treatment. Furthermore, the investigators identified a common metabolic signature – increased lactate to pyruvate levels and upregulation of the solute carrier family 2 member 14 (SLC2A14) gene – that distinguished responders and non-responders. The value of the metabolic signature was demonstrated by flow cytometry analysis, which confirmed significantly elevated cell surface expression of the SLC2A14 gene in CD3+, CD8+, and CD4+ circulating cell populations in responder patients.

“When immunotherapy works, it can be very successful and improve overall survival. About 20% to 40% of patients will respond,” said senior author Dr. David R. Soto-Pantoja, associate professor of surgery and cancer biology at Wake Forest School of Medicine. “But predictive biomarkers are urgently needed to guide treatment decisions and to develop new approaches to therapeutic resistance. We found functional and molecular metabolic biomarkers, which are associated with ICI response, can be detected in blood before treatment. Our study shows new insight in the treatment of melanoma that can be extended to other cancer types. These biomarkers can potentially lead to personalized treatment strategies to improve overall survival.”

The study was published in the February 17, 2022 online edition of the journal Clinical Cancer Research.

Related Links:
Wake Forest School of Medicine 

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Dengue Test
Lab Rapid Dengue NS1
New
Anti-Rubella IgG (Rubella IgG) Test
Rubella IgG AccuBind ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The new assays will run on the QIAcuity digital PCR (dPCR) platform (Photo courtesy of QIAGEN)

New Digital PCR Assays Enable Accurate and Sensitive Detection of Critical Pathogens

QIAGEN (Venlo, the Netherlands) has introduced 100 new assays for its QIAcuity digital PCR (dPCR) platform, aimed at advancing research in areas such as cancer, inherited genetic disorders, and infectious... Read more

Pathology

view channel
Image: The new AI technology more precisely predicts the risk of getting breast cancer (Photo courtesy of William Brøns Petersen)

AI Technology Accurately Predicts Breast Cancer Risk Via ‘Zombie Cells’

Breast cancer remains one of the most common cancers worldwide, causing 670,000 deaths in 2022. A key aspect of assessing cancer risk involves identifying dying cells. A new study has demonstrated that... Read more

Industry

view channel
Image: International expert meeting for trends and innovations in laboratory medicine - the MEDICA LABMED FORUM at MEDICA (Photo courtesy of Constanze Tillmann/Messe Düsseldorf)

MEDICA LABMED FORUM 2024: International Experts Meet to Discuss Trending Topics in Laboratory Medicine

At MEDICA (Düsseldorf, Germany), the world’s premier trade fair for the healthcare industry and medical technology sector, this year’s event (November 11–14) will focus on the most exciting medical advancements.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.