We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Liquid Biopsy of Cerebrospinal Fluid for Diagnosis of Medulloblastoma

By LabMedica International staff writers
Posted on 08 Mar 2022

A recent study found that young patients with the aggressive brain cancer medulloblastoma have a unique molecular makeup in their cerebrospinal fluid, which might be useful for diagnosis and monitoring the presence of a tumor in the central nervous system. More...

Medulloblastoma (MB) is the most common malignant tumor of the cerebellum in children, and it accounts for 10–15% of pediatric central nervous system (CNS) tumors. MB has a propensity to invade and disseminate in the cerebrospinal fluid (CSF), with disseminated CNS disease occurring in 30–40% of cases at initial diagnosis and most patients at recurrence. The current diagnosis of MB is based on clinical assessment, imaging, and subsequent histopathological examination of biopsies, with magnetic resonance imaging (MRI) and lumbar puncture often performed to monitor treatment responses and to detect recurrences.

As CSF provides a window into the central nervous system, investigators at the Johns Hopkins University School of Medicine (Baltimore, MD, USA) proposed that liquid biopsy of CSF could provide a relatively non-invasive means for diagnosis of MB.

To this end, they used RNA-sequencing and high-resolution mass spectrometry to analyze the transcriptomic, metabolomic, and lipidomic landscapes of CSF samples obtained from forty patients with primary or recurrent MB and eleven normal controls.

Results revealed that 110 genes and 10 circular RNAs were differentially expressed in MB CSF compared with normal, representing TGF-beta (transforming growth factor beta) signaling, TNF-alpha (tumor necrosis factor alpha) signaling via NF-kappaB (nuclear factor kappa-light-chain-enhancer of activated B-cells), and adipogenesis pathways. Tricarboxylic acid cycle and other metabolites (malate, fumarate, succinate, alpha-ketoglutarate, hydroxypyruvate, N-acetyl-aspartate) and total triacylglycerols were significantly upregulated in MB CSF compared with normal CSF.

Although the analysis could not distinguish among the four subtypes of medulloblastoma, the results could be used to identify the presence of cancer versus normal fluid. Furthermore, metabolic and lipidomic profiles both contained indicators of tumor hypoxia.

"We believe this is the first comprehensive, integrated molecular analysis of the cerebrospinal fluid in medulloblastoma patients," said senior author Dr. Ranjan Perera, associate professor of oncology at the Johns Hopkins University School of Medicine. "Our study provides proof of principle that all three molecular approaches—studying RNA, lipids, and metabolites—can be successfully applied to cerebrospinal fluid samples, not only to differentiate medulloblastoma patients from those without the disease, but also to provide new insights into the pathobiology of the disease."

The medulloblastoma study was published in the February 24, 2022 online edition of the journal Acta Neuropathologica Communications.

Related Links:
Johns Hopkins University School of Medicine 


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Collection and Transport System
PurSafe Plus®
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The TmS computational biomarker analyzes tumor gene expression and microenvironment data to guide treatment decisions (Photo courtesy of MD Anderson Cancer Center)

New Biomarker Predicts Chemotherapy Response in Triple-Negative Breast Cancer

Triple-negative breast cancer is an aggressive form of breast cancer in which patients often show widely varying responses to chemotherapy. Predicting who will benefit from treatment remains challenging,... Read more

Pathology

view channel
Image: The innovative classifier can guide treatment for PDAC and other immunotherapy-resistant cancers (Photo courtesy of Adobe Stock))

Single Sample Classifier Predicts Cancer-Associated Fibroblast Subtypes in Patient Samples

Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers, in part because of its dense tumor microenvironment that influences how tumors grow and respond to treatment.... Read more

Industry

view channel
Image: QuidelOrtho has entered into a strategic supply agreement with Lifotronic to expand its global immunoassay portfolio (Photo courtesy of QuidelOrtho)

QuidelOrtho Collaborates with Lifotronic to Expand Global Immunoassay Portfolio

QuidelOrtho (San Diego, CA, USA) has entered a long-term strategic supply agreement with Lifotronic Technology (Shenzhen, China) to expand its global immunoassay portfolio and accelerate customer access... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.