We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Way to Identify Influenza A Virus Could Pave Way for More Sensitive Tests

By LabMedica International staff writers
Posted on 08 Jun 2022
Print article
Image: A new way to identify influenza A virus lights up when specific virus targets are present (Photo courtesy of Tohoku University)
Image: A new way to identify influenza A virus lights up when specific virus targets are present (Photo courtesy of Tohoku University)

The influenza A virus, which is responsible for seasonal flu outbreaks, causes between 290,000 and 650,000 deaths per year globally. Because the influenza A virus is constantly changing, or mutating, it can be difficult to detect, treat, and inoculate against. To solve this problem, researchers are looking for parts of the influenza virus that do not change when the virus mutates. A panhandle structure on the virus known as the promoter region or promoter has emerged as a potential target. By finding new ways to target specific parts of the influenza A virus that do not change when the virus mutates, this research could be used to create more sensitive tests that can detect the influenza A virus more easily.

In order to quickly detect the presence of the influenza A virus, researchers at Tohoku University (Sendai, Japan) have developed a fluorogenic probe that could bind to the promoter region of the influenza A virus RNA. A fluorogenic probe is based on small molecules called fluorophores that emit light when a specific target is present. In the new study, the fluorogenic probe researchers created binds to part of the promoter region that consists of double-strand RNA structure carrying the internal loop, creating a significant light-up response that can identify the presence of influenza A. In order to create the fluorogenic probe, researchers used a type of synthetic DNA called peptide nucleic acid (PNA). The triplex-forming PNA can be specifically developed to target the double-stranded RNA in the panhandle structure of the influenza A virus RNA in the sequence-selective manner. Researchers then combined the triplex forming PNA having a type of dye called thiazole orange with a small molecule that would bind with the internal loop structure of the RNA.

This combination is called a conjugate. To determine how effective the conjugate was, researchers first analyzed how brightly the conjugate glowed when it was bound to the target panhandle structure of the promoter region. It was more than 130-fold brighter than when it was not bound to anything. Compared to the small molecules alone, the combination of the PNA and the small molecules had a stronger binding affinity by two orders of magnitude. This result shows how promising this technique could be for the diagnosis of influenza A, since the promoter region remains stable no matter the strain of influenza. In the future, this could even be a promising target for antiviral drugs that could treat infections of influenza A.

"The promoter region of influenza A virus RNA has emerged as a new target for biochemical and therapeutic application because the sequences are not involved in the gene variations related to pathogenesis (how the flu virus develops) and antiviral resistance," said Yusuke Sato, an associate professor at Tohoku University. "These results represent the development of new molecular probes for influenza A research, with a view toward the diagnosis of influenza A infection, as well as the design of new antivirus drugs targeting the influenza A virus RNA promoter region."

"The research group demonstrated the selective fluorescence response of the conjugate for total RNA from influenza A virus H1N1-infected cells over that from mock-infected ones," added Sato. "This technique would serve as a promising candidate for the analysis of influenza A virus RNA based on the direct sensing of the influenza A virus RNA promoter region, in sharp contrast to the gold standard PCR method."

Related Links:
Tohoku University 

New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
UHF RFID Tag and Inlay
AD-321r6/AD-321r6-P
New
ELISA System
ABSOL HS DUO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.