We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Biomarkers to Help Gauge Response of Melanoma Patients to Immune Checkpoint Therapy

By LabMedica International staff writers
Posted on 20 Sep 2022
Print article
Image: Immune checkpoint (Photo courtesy of The Wistar Institute)
Image: Immune checkpoint (Photo courtesy of The Wistar Institute)

A recent study identified biomarkers that demonstrate stable performance in predicting the response of melanoma patients to immune checkpoint inhibitor (ICI) therapy.

Since only a subset of melanoma patients respond to immunotherapy with checkpoint inhibitors, predictive biomarkers are critically needed to guide treatment decisions and develop approaches to the treatment of therapeutic resistance.

The Tumor Mutation Burden (TMB) is the only [U.S.] FDA-approved biomarker for melanoma. TMB is defined as the number of somatic mutations per megabase whereas mutational signatures are distinct mutational patterns of single base substitutions, double base substitutions, or small insertions and deletions in tumors. TMB has shown potential as a predictive biomarker with several applications, including associations reported between different TMB levels and patient response to immune checkpoint inhibitor (ICI) therapy in a variety of cancers. However, the mechanisms underlying TMB association with prolonged ICI survival are not entirely understood and may depend on numerous confounding factors.

Investigators at the The Wistar Institute (Philadelphia, PA, USA) sought to identify better ICI response biomarkers based on tumor mutations. Toward this end, they evaluated a variety of feature selection and classification methods and identified key mutated biological processes that provided improved predictive capability compared to the TMB.

Over the course of the study, the investigators worked with training and validation mutation and clinical datasets from metastatic melanoma patients treated with anti-PD1. For training, they used 144 melanoma patients’ samples, including somatic mutations and anti-PD1 response information. For validation, they used 68 melanoma patients’ samples with somatic mutations and relevant clinical data. To further test the models, they used an additional 38 anti-PD1-treated melanoma patients’ samples. For all datasets, responders were defined as patients with complete or partial response.

The top mutated processes identified by the study were involved in leukocyte and T-cell proliferation regulation. These markers demonstrated stable predictive performance across different data cohorts of melanoma patients treated with ICI. Identification of these mutated processes is expected to substantially improve prediction of response to ICI by melanoma patients over that obtainable from the TMB.

“This work aims to identify better and more biologically interpretable genomic predictors for immunotherapy responses,” said senior author Dr. Noam Auslander, assistant professor of molecular and cellular oncogenesis at the Wistar Institute. “We need better biomarkers to help select patients that are more likely to respond to ICI therapy and understand what factors can help to enhance responses and increase those numbers.”

The study was published in the September 19, 2022, online edition of the journal Nature Communications.

Related Links:
The Wistar Institute

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
New
Gold Member
Veterinary Hematology Analyzer
Exigo H400
New
Treponema Pallidum Test
ZEUS IFA Fluorescent Treponemal Antibody-Absorption (FTA-ABS) Test System
New
RFID Tag
AD-302 M730

Print article

Channels

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.