We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




World’s First AI-Powered Diagnostic Test Accurately Identifies Respiratory Viruses in Five Minutes

By LabMedica International staff writers
Posted on 09 Feb 2023
Print article
Image: The new AI virus diagnostic test could replace current testing methods (Photo courtesy of University of Oxford)
Image: The new AI virus diagnostic test could replace current testing methods (Photo courtesy of University of Oxford)

Current testing methods for respiratory viruses – such as a lateral flow test for COVID-19 – are limited to testing for just one infection or are either lab-based and time-consuming or fast and less accurate. Now, a world-first diagnostic test powered by artificial intelligence (AI) that can identify known respiratory viruses within five minutes from just one nasal or throat swab could replace the current testing methods.

The ground-breaking virus detection and identification methodology has been described in a paper published in ACS Nano by researchers at University of Oxford (Oxford, UK). The paper demonstrates how machine learning can significantly improve the efficiency, accuracy and time required to identify different types of viruses, as well as differentiate between the strains. The technology combines molecular labeling, computer vision and machine learning to create a universal diagnostic imaging platform that looks directly at a patient sample and identifies which pathogen is present within seconds – similar to facial recognition software, but for germs.

In preliminary studies, the researchers have shown that the test can identify the COVID-19 virus in patient samples and further research determined that the test could be used for diagnosing multiple respiratory infections. In a study to validate the new method that uses AI software to identify viruses, the researchers began by labeling viruses with single-stranded DNA in more than 200 clinical samples. The images of labeled samples were captured using a commercial fluorescence microscope and processed by custom machine-learning software that is trained to recognize specific viruses by analyzing their fluorescence labels, which show up differently for each virus due to their varying surface size, shape and chemistry. The study showed that the technology is capable of rapidly identifying different types and strains of respiratory viruses, including flu and COVID-19, within five minutes and with an accuracy of >97%.

“Our simplified method of diagnostic testing is quicker and more cost-effective, accurate and future proof than any other tests currently available,” said Dr. Nicole Robb from the University of Warwick and Visiting Lecturer at Oxford’s Department of Physics. “If we want to detect a new virus, all we need to do is retrain the software to recognize it, rather than develop a whole new test. Our findings demonstrate the potential for this method to revolutionize viral diagnostics and our ability to control the spread of respiratory illnesses.”

Related Links:
University of Oxford

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
Treponema Pallidum Test
ZEUS IFA Fluorescent Treponemal Antibody-Absorption (FTA-ABS) Test System
New
Silver Member
Human Amyloid-Beta Test
Amyloid-beta (1-40) CSF ELISA

Print article

Channels

Immunology

view channel

3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response

Tumor heterogeneity presents a major obstacle in the development and treatment of cancer therapies, as patients' responses to the same drug can differ, and the timing of treatment significantly influences prognosis. Consequently, technologies that predict the effectiveness of anticancer treatments are essential in minimizing... Read more

Microbiology

view channel
Image: The Cytovale System isolates, images, and analyzes cells (Photo courtesy of Cytovale)

Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application

Sepsis is the leading cause of death and the most expensive condition treated in U.S. hospitals. The risk of death from sepsis increases by up to 8% for each hour that treatment is delayed, making early... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.