We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Simple Paper Test Analyses Urine Samples for Early Cancer Diagnosis

By LabMedica International staff writers
Posted on 26 Apr 2023
Print article
Image: New nanoparticle sensor could enable early diagnosis of cancer with a simple urine test (Photo courtesy of MIT)
Image: New nanoparticle sensor could enable early diagnosis of cancer with a simple urine test (Photo courtesy of MIT)

Engineers at Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) have developed an innovative nanoparticle sensor that could facilitate early cancer diagnosis through a simple urine test. These sensors can identify various cancerous proteins and may also help differentiate tumor types or gauge treatment response. When the nanoparticles encounter a tumor, they release short DNA sequences that appear in the urine. Examining these DNA "barcodes" can expose specific characteristics of a patient's tumor. The test is designed to work with a paper strip, which could make it cost-effective and widely accessible.

The researchers employed two kinds of nanoparticles for their study: an FDA-approved polymer-based particle for human use and a "nanobody" - an antibody fragment designed to accumulate at the tumor site. Once the sensors are secreted in the urine, the sample is analyzed using a paper strip that recognizes a reporter activated by the CRISPR enzyme Cas12a. If a specific DNA barcode is present in the sample, Cas12a amplifies the signal, resulting in a visible dark strip on the paper test. These particles can be engineered to carry multiple DNA barcodes for detecting different protease activities, enabling "multiplexed" sensing. Additionally, using more sensors enhances sensitivity and specificity, allowing the test to differentiate between tumor types more effectively.

In mouse trials, the researchers demonstrated that a set of five DNA barcodes could accurately differentiate lung tumors from colorectal cancer metastases in the lungs. Their method could also scale up to identify at least 46 distinct DNA barcodes in a single sample using a microfluidic device. Given the significant variability in human tumors, more than five barcodes may be required for human use. To address this, the researchers have developed a microfluidic chip capable of reading up to 46 DNA barcodes from a single sample. This testing approach could be employed not only for cancer detection but also for monitoring treatment response and recurrence. The researchers are now focused on refining the nanoparticles and preparing them for human trials.

“We are trying to innovate in a context of making technology available to low- and middle-resource settings. Putting this diagnostic on paper is part of our goal of democratizing diagnostics and creating inexpensive technologies that can give you a fast answer at the point of care,” said Sangeeta Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and of Electrical Engineering and Computer Science at MIT and a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science.

Related Links:
MIT 

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Dengue Virus Immunochromatographic Assay
STANDARD Q Dengue IgM/IgG Test
New
Four-in-One Desktop Testing Solution
GULP-1sim/GULP-1ble

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Pathology

view channel
Image: The PAXgene Urine Liquid Biopsy Set is the first standardized preanalytical workflow that stabilizes cell-free DNA in urine for subsequent analysis (Photo courtesy of PreAnalytiX)

Liquid Biopsy Solution Enables Non-Invasive Sample Collection and Direct Cell-Free DNA Stabilization from Urine

Urine cell-free DNA (cfDNA) presents significant potential for research and future clinical applications. It facilitates the measurement and analysis of cfDNA fragments, detection of genetic alterations,... Read more

Industry

view channel
Image: International expert meeting for trends and innovations in laboratory medicine - the MEDICA LABMED FORUM at MEDICA (Photo courtesy of Constanze Tillmann/Messe Düsseldorf)

MEDICA LABMED FORUM 2024: International Experts Meet to Discuss Trending Topics in Laboratory Medicine

At MEDICA (Düsseldorf, Germany), the world’s premier trade fair for the healthcare industry and medical technology sector, this year’s event (November 11–14) will focus on the most exciting medical advancements.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.