We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Sensor Chip Shows Promise for Rapid, Low-Cost POC Disease Diagnostics

By LabMedica International staff writers
Posted on 27 Jun 2023
Print article
Image: LAMP reaction chamber and nanopore film sensor containing immobilized LAMP products (Photo courtesy of Texas A&M AgriLife)
Image: LAMP reaction chamber and nanopore film sensor containing immobilized LAMP products (Photo courtesy of Texas A&M AgriLife)

The Loop-Mediated Isothermal Amplification (LAMP) technique is a popular method for identifying pathogens by amplifying their DNA. The detection of LAMP-amplified products, such as the DNA of pathogens, typically requires the use of fluorescent dyes to "label" these products, which can be expensive and have low sensitivity. Now, researchers have designed a new sensor capable of diagnosing pathogens without the need for these reagents and with a high degree of sensitivity. This new development also eliminates the time-consuming process of DNA purification, which often poses challenges for point-of-care applications.

Scientists at Texas A&M AgriLife Research (College Station, TX, USA) in collaboration with Iowa State University (Ames, IA, USA) have developed a sensor chip capable of identifying numerous disease-causing pathogens with ten times the sensitivity of existing techniques. The sensor chip eliminates the need for chemical dye reagents typically employed in diagnostics. The innovative chip consists of a nanopore thin-film sensor housed within a unique reaction chamber. Uniquely designed primers are immobilized on the nanofilm, causing the amplified LAMP products to bind to the sensor. The resulting signals can then be directly and easily measured using a portable spectrometer. The sensor delivers results within approximately 30 minutes. This new technology holds the promise of rapid, inexpensive point-of-care diagnostics in various sectors, including plants, food, animals, and human health, including the detection of foodborne pathogens, bird flu, and COVID-19.

In their study, the researchers used the innovative sensor to identify Phytophthora infestans, a pathogen that causes the highly destructive late blight disease, posing a significant threat to potato and tomato crops worldwide. The LAMP chip offers a new portable platform for pathogen detection, employing label-free sensors with exceptional sensitivity. The research team will now focus on increasing its sensitivity to the subattomolar levels or even lower. They aim to overcome the existing challenges in identifying and differentiating pathogen species and strains that share high sequence similarities. The team also plans to improve detection specificity and implement quantitative detection by integrating artificial intelligence and CRISPR gene-editing technologies. Their goal is to develop a feasible product for wide-ranging use in plant, animal, and human health point-of-care applications.

“This research advances technologies that have emerged as some of our greatest opportunities for improving agriculture, food safety and human health,” said Junqi Song, Ph.D., associate professor and plant immunity research lead with AgriLife Research. “Our publication represents a step toward realizing these powerful tools against diseases.”

Related Links:
Texas A&M AgriLife Research
Iowa State University

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Coccidioidomycosis Test
Premier Coccidioides Antibody Test
New
Washer Disinfector
Tiva 8

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.