We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Model Accurately Shows Presence and Location of Cancer in Pathological Images

By LabMedica International staff writers
Posted on 15 Aug 2022
Print article
Image: AI model reduces cost and time and increasing accuracy of cancer diagnosis (Photo courtesy of Pexels)
Image: AI model reduces cost and time and increasing accuracy of cancer diagnosis (Photo courtesy of Pexels)

It is usually necessary to accurately mark the location of the cancer site in pathological images to solve the problems involved with zoning that indicates the location information of cancer, which takes a long time and therefore increased cost. Existing deep learning models need to construct a dataset, in which the location of the cancer was accurately drawn, to specify the cancer site. Now, researchers have developed a weakly supervised deep learning model that can accurately show the presence and location of cancer in pathological images based only on data where the cancer is present. The deep learning model improves efficiency and is expected to make a significant contribution to the relevant research field.

Scientists at Daegu Gyeongbuk Institute of Science and Technology (DGIST, Daegu, Korea) developed the weakly supervised learning model that zones cancer sites with only rough data such as 'whether the cancer in the image is present or not' is under active study. However, there would be a significant deterioration in performance if the existing weakly supervised learning model is applied to a huge pathological image dataset where the size of one image is as large as a few gigabytes. To solve this problem, the researchers attempted to improve performance by dividing the pathological image into patches, although the divided patches lose the correlation between the location information and each split data, which means that there is a limit to using all of the available information.

In response, the research team discovered a technique of segmenting down to the cancer site solely based on the learned data indicating the presence of cancer by slide. The team developed a pathological image compression technology that first teaches the network to effectively extract significant features from the patches through unsupervised contrastive learning and uses this to detect the main features while maintaining each location information to reduce the size of the image while maintaining the correlation between the patches. Later, the team developed a model that can find the regions that are highly likely to have cancer from the compressed pathology images by using a class activation map and zone all of these regions from the entire pathology images using a pixel correlation module (PCM). The newly developed deep learning model showed a dice similarity coefficient (DSC) score of up to 81-84 only with the learning data with slide-level cancer labels in the cancer zoning problem. It significantly exceeded the performance of previously proposed patch level methods or other weakly supervised learning techniques (DSC score: 20 - 70).

“The model developed through this study has greatly improved the performance of weakly supervised learning of pathological images, and it is expected to contribute to improving the efficiency of various studies requiring pathological image analysis,” said Professor Park Sang-Hyun of the Department of Robotics and Mechatronics Engineering at DGIST. “If we can improve the related technology further in the future, it will be possible to use it universally for various medical image zoning issues.”

Related Links:
DGIST 

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Vitamin B12 Test
CHORUS CLIA VIT B12
New
Urine Strips
11 Parameter Urine Strips

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.