We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Rapid-Live Screening Microscopy Technique Enables Early Detection of Treatment-Resistant Cancer Cells

By LabMedica International staff writers
Posted on 27 Sep 2023
Print article
Image: A new microscopy method detects treatment-resistant cancer cells early (Photo courtesy of 123RF)
Image: A new microscopy method detects treatment-resistant cancer cells early (Photo courtesy of 123RF)

Chemotherapy serves as an effective tool in the fight against cancer, yet some cancer cells can evade treatment by going into a dormant state known as senescence. These so-called therapy-induced senescent (TIS) cells can become not just resistant to treatment but also potentially more harmful, even metastasizing. Early identification of TIS cells could be crucial in stopping their progression, but current detection techniques aren't quick or accurate enough. Now, new advanced microscopy techniques may offer a solution, allowing healthcare providers to identify these cells early on and adapt treatment plans accordingly.

A team of researchers at Johns Hopkins University (Baltimore, MD, USA) used a combination of three state-of-the-art, label-free microscopy methods—coherent Raman scattering, multi-photon absorption, and optical diffraction tomography—to examine TIS cells in their natural setting. This approach is unlike traditional methods and gave the scientists the ability to look at the cells' form, internal structure, and both physical and chemical properties during their entire life cycle.

The use of these advanced microscopy methods uncovered significant transformations within the TIS cells. For instance, within a day, the cells' mitochondria—the "energy factories" inside them—had repositioned themselves. By the 72-hour mark, the cells had started to excessively produce fatty molecules known as lipids and had become flatter and larger. This in-depth analysis helped the researchers establish a detailed timeline of these cellular changes. According to the team, their novel rapid-live screening microscopy methods offer great potential for advancing cancer research.

"Our work demonstrates the potential to transform anticancer treatment research," said Ishan Barman, an associate professor of mechanical engineering at Johns Hopkins Whiting School of Engineering. "Integrating these microscopy methods could help clinicians make more informed, timely treatment decisions."

Related Links:
Johns Hopkins University 

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.